栈
树
深度优先搜索
二叉树
题目描述
给你二叉树的根节点 root
,返回它节点值的 前序 遍历。
示例 1:
输入: root = [1,null,2,3]
输出: [1,2,3]
解释:
示例 2:
输入: root = [1,2,3,4,5,null,8,null,null,6,7,9]
输出: [1,2,4,5,6,7,3,8,9]
解释:
示例 3:
示例 4:
提示:
树中节点数目在范围 [0, 100]
内
-100 <= Node.val <= 100
进阶: 递归算法很简单,你可以通过迭代算法完成吗?
解法
方法一:递归遍历
我们先访问根节点,然后递归左子树和右子树。
时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是二叉树的节点数,空间复杂度主要取决于递归调用的栈空间。
Python3 Java C++ Go TypeScript Rust
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution :
def preorderTraversal ( self , root : Optional [ TreeNode ]) -> List [ int ]:
def dfs ( root ):
if root is None :
return
ans . append ( root . val )
dfs ( root . left )
dfs ( root . right )
ans = []
dfs ( root )
return ans
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private List < Integer > ans = new ArrayList <> ();
public List < Integer > preorderTraversal ( TreeNode root ) {
dfs ( root );
return ans ;
}
private void dfs ( TreeNode root ) {
if ( root == null ) {
return ;
}
ans . add ( root . val );
dfs ( root . left );
dfs ( root . right );
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public :
vector < int > preorderTraversal ( TreeNode * root ) {
vector < int > ans ;
function < void ( TreeNode * ) > dfs = [ & ]( TreeNode * root ) {
if ( ! root ) {
return ;
}
ans . push_back ( root -> val );
dfs ( root -> left );
dfs ( root -> right );
};
dfs ( root );
return ans ;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 /**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func preorderTraversal ( root * TreeNode ) ( ans [] int ) {
var dfs func ( * TreeNode )
dfs = func ( root * TreeNode ) {
if root == nil {
return
}
ans = append ( ans , root . Val )
dfs ( root . Left )
dfs ( root . Right )
}
dfs ( root )
return
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 /**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function preorderTraversal ( root : TreeNode | null ) : number [] {
const ans : number [] = [];
const dfs = ( root : TreeNode | null ) => {
if ( ! root ) {
return ;
}
ans . push ( root . val );
dfs ( root . left );
dfs ( root . right );
};
dfs ( root );
return ans ;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37 // Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std :: cell :: RefCell ;
use std :: rc :: Rc ;
impl Solution {
fn dfs ( root : & Option < Rc < RefCell < TreeNode >>> , ans : & mut Vec < i32 > ) {
if root . is_none () {
return ;
}
let node = root . as_ref (). unwrap (). borrow ();
ans . push ( node . val );
Self :: dfs ( & node . left , ans );
Self :: dfs ( & node . right , ans );
}
pub fn preorder_traversal ( root : Option < Rc < RefCell < TreeNode >>> ) -> Vec < i32 > {
let mut ans = vec! [];
Self :: dfs ( & root , & mut ans );
ans
}
}
方法二:栈实现非递归遍历
栈实现非递归遍历的思路如下:
定义一个栈 $stk$,先将根节点压入栈
若栈不为空,每次从栈中弹出一个节点
处理该节点
先把节点右孩子压入栈,接着把节点左孩子压入栈(如果有孩子节点)
重复 2-4
返回结果
时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是二叉树的节点数,空间复杂度主要取决于栈空间。
Python3 Java C++ Go TypeScript
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution :
def preorderTraversal ( self , root : Optional [ TreeNode ]) -> List [ int ]:
ans = []
if root is None :
return ans
stk = [ root ]
while stk :
node = stk . pop ()
ans . append ( node . val )
if node . right :
stk . append ( node . right )
if node . left :
stk . append ( node . left )
return ans
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36 /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List < Integer > preorderTraversal ( TreeNode root ) {
List < Integer > ans = new ArrayList <> ();
if ( root == null ) {
return ans ;
}
Deque < TreeNode > stk = new ArrayDeque <> ();
stk . push ( root );
while ( ! stk . isEmpty ()) {
TreeNode node = stk . pop ();
ans . add ( node . val );
if ( node . right != null ) {
stk . push ( node . right );
}
if ( node . left != null ) {
stk . push ( node . left );
}
}
return ans ;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public :
vector < int > preorderTraversal ( TreeNode * root ) {
vector < int > ans ;
if ( ! root ) {
return ans ;
}
stack < TreeNode *> stk ;
stk . push ( root );
while ( stk . size ()) {
auto node = stk . top ();
stk . pop ();
ans . push_back ( node -> val );
if ( node -> right ) {
stk . push ( node -> right );
}
if ( node -> left ) {
stk . push ( node -> left );
}
}
return ans ;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 /**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func preorderTraversal ( root * TreeNode ) ( ans [] int ) {
if root == nil {
return
}
stk := [] * TreeNode { root }
for len ( stk ) > 0 {
node := stk [ len ( stk ) - 1 ]
stk = stk [: len ( stk ) - 1 ]
ans = append ( ans , node . Val )
if node . Right != nil {
stk = append ( stk , node . Right )
}
if node . Left != nil {
stk = append ( stk , node . Left )
}
}
return
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 /**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function preorderTraversal ( root : TreeNode | null ) : number [] {
const ans : number [] = [];
if ( ! root ) {
return ans ;
}
const stk : TreeNode [] = [ root ];
while ( stk . length ) {
const { left , right , val } = stk . pop ();
ans . push ( val );
right && stk . push ( right );
left && stk . push ( left );
}
return ans ;
}
方法三:Morris 实现前序遍历
Morris 遍历无需使用栈,空间复杂度为 $O(1)$。核心思想是:
遍历二叉树节点,
若当前节点 root
的左子树为空,将当前节点值添加至结果列表 $ans$ 中,并将当前节点更新为 root.right
若当前节点 root
的左子树不为空,找到左子树的最右节点 pre
(也即是 root
节点在中序遍历下的前驱节点):
若前驱节点 pre
的右子树为空,将当前节点值添加至结果列表 $ans$ 中,然后将前驱节点的右子树指向当前节点 root
,并将当前节点更新为 root.left
。
若前驱节点 pre
的右子树不为空,将前驱节点右子树指向空(即解除 pre
与 root
的指向关系),并将当前节点更新为 root.right
。
循环以上步骤,直至二叉树节点为空,遍历结束。
时间复杂度 $O(n)$,其中 $n$ 是二叉树的节点数。空间复杂度 $O(1)$。
Python3 Java C++ Go TypeScript
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution :
def preorderTraversal ( self , root : Optional [ TreeNode ]) -> List [ int ]:
ans = []
while root :
if root . left is None :
ans . append ( root . val )
root = root . right
else :
prev = root . left
while prev . right and prev . right != root :
prev = prev . right
if prev . right is None :
ans . append ( root . val )
prev . right = root
root = root . left
else :
prev . right = None
root = root . right
return ans
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40 /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List < Integer > preorderTraversal ( TreeNode root ) {
List < Integer > ans = new ArrayList <> ();
while ( root != null ) {
if ( root . left == null ) {
ans . add ( root . val );
root = root . right ;
} else {
TreeNode prev = root . left ;
while ( prev . right != null && prev . right != root ) {
prev = prev . right ;
}
if ( prev . right == null ) {
ans . add ( root . val );
prev . right = root ;
root = root . left ;
} else {
prev . right = null ;
root = root . right ;
}
}
}
return ans ;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public :
vector < int > preorderTraversal ( TreeNode * root ) {
vector < int > ans ;
while ( root ) {
if ( ! root -> left ) {
ans . push_back ( root -> val );
root = root -> right ;
} else {
TreeNode * prev = root -> left ;
while ( prev -> right && prev -> right != root ) {
prev = prev -> right ;
}
if ( ! prev -> right ) {
ans . push_back ( root -> val );
prev -> right = root ;
root = root -> left ;
} else {
prev -> right = nullptr ;
root = root -> right ;
}
}
}
return ans ;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 /**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func preorderTraversal ( root * TreeNode ) ( ans [] int ) {
for root != nil {
if root . Left == nil {
ans = append ( ans , root . Val )
root = root . Right
} else {
prev := root . Left
for prev . Right != nil && prev . Right != root {
prev = prev . Right
}
if prev . Right == nil {
ans = append ( ans , root . Val )
prev . Right = root
root = root . Left
} else {
prev . Right = nil
root = root . Right
}
}
}
return
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 /**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function preorderTraversal ( root : TreeNode | null ) : number [] {
const ans : number [] = [];
while ( root ) {
const { left , right , val } = root ;
if ( ! left ) {
ans . push ( val );
root = right ;
} else {
let prev = left ;
while ( prev . right && prev . right != root ) {
prev = prev . right ;
}
if ( ! prev . right ) {
ans . push ( val );
prev . right = root ;
root = root . left ;
} else {
prev . right = null ;
root = root . right ;
}
}
}
return ans ;
}