跳转至

1438. 绝对差不超过限制的最长连续子数组

题目描述

给你一个整数数组 nums ,和一个表示限制的整数 limit,请你返回最长连续子数组的长度,该子数组中的任意两个元素之间的绝对差必须小于或者等于 limit

如果不存在满足条件的子数组,则返回 0

 

示例 1:

输入:nums = [8,2,4,7], limit = 4
输出:2 
解释:所有子数组如下:
[8] 最大绝对差 |8-8| = 0 <= 4.
[8,2] 最大绝对差 |8-2| = 6 > 4. 
[8,2,4] 最大绝对差 |8-2| = 6 > 4.
[8,2,4,7] 最大绝对差 |8-2| = 6 > 4.
[2] 最大绝对差 |2-2| = 0 <= 4.
[2,4] 最大绝对差 |2-4| = 2 <= 4.
[2,4,7] 最大绝对差 |2-7| = 5 > 4.
[4] 最大绝对差 |4-4| = 0 <= 4.
[4,7] 最大绝对差 |4-7| = 3 <= 4.
[7] 最大绝对差 |7-7| = 0 <= 4. 
因此,满足题意的最长子数组的长度为 2 。

示例 2:

输入:nums = [10,1,2,4,7,2], limit = 5
输出:4 
解释:满足题意的最长子数组是 [2,4,7,2],其最大绝对差 |2-7| = 5 <= 5 。

示例 3:

输入:nums = [4,2,2,2,4,4,2,2], limit = 0
输出:3

 

提示:

  • 1 <= nums.length <= 10^5
  • 1 <= nums[i] <= 10^9
  • 0 <= limit <= 10^9

解法

方法一:有序集合 + 滑动窗口

我们可以枚举每个位置作为子数组的右端点,找到其对应的最靠左的左端点,满足区间内中最大值与最小值的差值不超过 $limit$。过程中,我们用有序集合维护窗口内的最大值和最小值。

时间复杂度 $O(n \times \log n)$,空间复杂度 $O(n)$。其中 $n$ 是数组 nums 的长度。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
from sortedcontainers import SortedList


class Solution:
    def longestSubarray(self, nums: List[int], limit: int) -> int:
        sl = SortedList()
        ans = j = 0
        for i, x in enumerate(nums):
            sl.add(x)
            while sl[-1] - sl[0] > limit:
                sl.remove(nums[j])
                j += 1
            ans = max(ans, i - j + 1)
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
class Solution {
    public int longestSubarray(int[] nums, int limit) {
        TreeMap<Integer, Integer> tm = new TreeMap<>();
        int ans = 0;
        for (int i = 0, j = 0; i < nums.length; ++i) {
            tm.merge(nums[i], 1, Integer::sum);
            for (; tm.lastKey() - tm.firstKey() > limit; ++j) {
                if (tm.merge(nums[j], -1, Integer::sum) == 0) {
                    tm.remove(nums[j]);
                }
            }
            ans = Math.max(ans, i - j + 1);
        }
        return ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
class Solution {
public:
    int longestSubarray(vector<int>& nums, int limit) {
        multiset<int> s;
        int ans = 0, j = 0;
        for (int i = 0; i < nums.size(); ++i) {
            s.insert(nums[i]);
            while (*s.rbegin() - *s.begin() > limit) {
                s.erase(s.find(nums[j++]));
            }
            ans = max(ans, i - j + 1);
        }
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
func longestSubarray(nums []int, limit int) (ans int) {
    merge := func(st *redblacktree.Tree[int, int], x, v int) {
        c, _ := st.Get(x)
        if c+v == 0 {
            st.Remove(x)
        } else {
            st.Put(x, c+v)
        }
    }
    st := redblacktree.New[int, int]()
    j := 0
    for i, x := range nums {
        merge(st, x, 1)
        for ; st.Right().Key-st.Left().Key > limit; j++ {
            merge(st, nums[j], -1)
        }
        ans = max(ans, i-j+1)
    }
    return
}
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
function longestSubarray(nums: number[], limit: number): number {
    const ts = new TreapMultiSet<number>();
    let ans = 0;
    let j = 0;
    for (let i = 0; i < nums.length; ++i) {
        ts.add(nums[i]);
        while (ts.last()! - ts.first()! > limit) {
            ts.delete(nums[j++]);
        }
        ans = Math.max(ans, i - j + 1);
    }
    return ans;
}

type CompareFunction<T, R extends 'number' | 'boolean'> = (
    a: T,
    b: T,
) => R extends 'number' ? number : boolean;

interface ITreapMultiSet<T> extends Iterable<T> {
    add: (...value: T[]) => this;
    has: (value: T) => boolean;
    delete: (value: T) => void;

    bisectLeft: (value: T) => number;
    bisectRight: (value: T) => number;

    indexOf: (value: T) => number;
    lastIndexOf: (value: T) => number;

    at: (index: number) => T | undefined;
    first: () => T | undefined;
    last: () => T | undefined;

    lower: (value: T) => T | undefined;
    higher: (value: T) => T | undefined;
    floor: (value: T) => T | undefined;
    ceil: (value: T) => T | undefined;

    shift: () => T | undefined;
    pop: (index?: number) => T | undefined;

    count: (value: T) => number;

    keys: () => IterableIterator<T>;
    values: () => IterableIterator<T>;
    rvalues: () => IterableIterator<T>;
    entries: () => IterableIterator<[number, T]>;

    readonly size: number;
}

class TreapNode<T = number> {
    value: T;
    count: number;
    size: number;
    priority: number;
    left: TreapNode<T> | null;
    right: TreapNode<T> | null;

    constructor(value: T) {
        this.value = value;
        this.count = 1;
        this.size = 1;
        this.priority = Math.random();
        this.left = null;
        this.right = null;
    }

    static getSize(node: TreapNode<any> | null): number {
        return node?.size ?? 0;
    }

    static getFac(node: TreapNode<any> | null): number {
        return node?.priority ?? 0;
    }

    pushUp(): void {
        let tmp = this.count;
        tmp += TreapNode.getSize(this.left);
        tmp += TreapNode.getSize(this.right);
        this.size = tmp;
    }

    rotateRight(): TreapNode<T> {
        // eslint-disable-next-line @typescript-eslint/no-this-alias
        let node: TreapNode<T> = this;
        const left = node.left;
        node.left = left?.right ?? null;
        left && (left.right = node);
        left && (node = left);
        node.right?.pushUp();
        node.pushUp();
        return node;
    }

    rotateLeft(): TreapNode<T> {
        // eslint-disable-next-line @typescript-eslint/no-this-alias
        let node: TreapNode<T> = this;
        const right = node.right;
        node.right = right?.left ?? null;
        right && (right.left = node);
        right && (node = right);
        node.left?.pushUp();
        node.pushUp();
        return node;
    }
}

class TreapMultiSet<T = number> implements ITreapMultiSet<T> {
    private readonly root: TreapNode<T>;
    private readonly compareFn: CompareFunction<T, 'number'>;
    private readonly leftBound: T;
    private readonly rightBound: T;

    constructor(compareFn?: CompareFunction<T, 'number'>);
    constructor(compareFn: CompareFunction<T, 'number'>, leftBound: T, rightBound: T);
    constructor(
        compareFn: CompareFunction<T, any> = (a: any, b: any) => a - b,
        leftBound: any = -Infinity,
        rightBound: any = Infinity,
    ) {
        this.root = new TreapNode<T>(rightBound);
        this.root.priority = Infinity;
        this.root.left = new TreapNode<T>(leftBound);
        this.root.left.priority = -Infinity;
        this.root.pushUp();

        this.leftBound = leftBound;
        this.rightBound = rightBound;
        this.compareFn = compareFn;
    }

    get size(): number {
        return this.root.size - 2;
    }

    get height(): number {
        const getHeight = (node: TreapNode<T> | null): number => {
            if (node == null) return 0;
            return 1 + Math.max(getHeight(node.left), getHeight(node.right));
        };

        return getHeight(this.root);
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Returns true if value is a member.
     */
    has(value: T): boolean {
        const compare = this.compareFn;
        const dfs = (node: TreapNode<T> | null, value: T): boolean => {
            if (node == null) return false;
            if (compare(node.value, value) === 0) return true;
            if (compare(node.value, value) < 0) return dfs(node.right, value);
            return dfs(node.left, value);
        };

        return dfs(this.root, value);
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Add value to sorted set.
     */
    add(...values: T[]): this {
        const compare = this.compareFn;
        const dfs = (
            node: TreapNode<T> | null,
            value: T,
            parent: TreapNode<T>,
            direction: 'left' | 'right',
        ): void => {
            if (node == null) return;
            if (compare(node.value, value) === 0) {
                node.count++;
                node.pushUp();
            } else if (compare(node.value, value) > 0) {
                if (node.left) {
                    dfs(node.left, value, node, 'left');
                } else {
                    node.left = new TreapNode(value);
                    node.pushUp();
                }

                if (TreapNode.getFac(node.left) > node.priority) {
                    parent[direction] = node.rotateRight();
                }
            } else if (compare(node.value, value) < 0) {
                if (node.right) {
                    dfs(node.right, value, node, 'right');
                } else {
                    node.right = new TreapNode(value);
                    node.pushUp();
                }

                if (TreapNode.getFac(node.right) > node.priority) {
                    parent[direction] = node.rotateLeft();
                }
            }
            parent.pushUp();
        };

        values.forEach(value => dfs(this.root.left, value, this.root, 'left'));
        return this;
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Remove value from sorted set if it is a member.
     * If value is not a member, do nothing.
     */
    delete(value: T): void {
        const compare = this.compareFn;
        const dfs = (
            node: TreapNode<T> | null,
            value: T,
            parent: TreapNode<T>,
            direction: 'left' | 'right',
        ): void => {
            if (node == null) return;

            if (compare(node.value, value) === 0) {
                if (node.count > 1) {
                    node.count--;
                    node?.pushUp();
                } else if (node.left == null && node.right == null) {
                    parent[direction] = null;
                } else {
                    // 旋到根节点
                    if (
                        node.right == null ||
                        TreapNode.getFac(node.left) > TreapNode.getFac(node.right)
                    ) {
                        parent[direction] = node.rotateRight();
                        dfs(parent[direction]?.right ?? null, value, parent[direction]!, 'right');
                    } else {
                        parent[direction] = node.rotateLeft();
                        dfs(parent[direction]?.left ?? null, value, parent[direction]!, 'left');
                    }
                }
            } else if (compare(node.value, value) > 0) {
                dfs(node.left, value, node, 'left');
            } else if (compare(node.value, value) < 0) {
                dfs(node.right, value, node, 'right');
            }

            parent?.pushUp();
        };

        dfs(this.root.left, value, this.root, 'left');
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Returns an index to insert value in the sorted set.
     * If the value is already present, the insertion point will be before (to the left of) any existing values.
     */
    bisectLeft(value: T): number {
        const compare = this.compareFn;
        const dfs = (node: TreapNode<T> | null, value: T): number => {
            if (node == null) return 0;

            if (compare(node.value, value) === 0) {
                return TreapNode.getSize(node.left);
            } else if (compare(node.value, value) > 0) {
                return dfs(node.left, value);
            } else if (compare(node.value, value) < 0) {
                return dfs(node.right, value) + TreapNode.getSize(node.left) + node.count;
            }

            return 0;
        };

        return dfs(this.root, value) - 1;
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Returns an index to insert value in the sorted set.
     * If the value is already present, the insertion point will be before (to the right of) any existing values.
     */
    bisectRight(value: T): number {
        const compare = this.compareFn;
        const dfs = (node: TreapNode<T> | null, value: T): number => {
            if (node == null) return 0;

            if (compare(node.value, value) === 0) {
                return TreapNode.getSize(node.left) + node.count;
            } else if (compare(node.value, value) > 0) {
                return dfs(node.left, value);
            } else if (compare(node.value, value) < 0) {
                return dfs(node.right, value) + TreapNode.getSize(node.left) + node.count;
            }

            return 0;
        };
        return dfs(this.root, value) - 1;
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Returns the index of the first occurrence of a value in the set, or -1 if it is not present.
     */
    indexOf(value: T): number {
        const compare = this.compareFn;
        let isExist = false;

        const dfs = (node: TreapNode<T> | null, value: T): number => {
            if (node == null) return 0;

            if (compare(node.value, value) === 0) {
                isExist = true;
                return TreapNode.getSize(node.left);
            } else if (compare(node.value, value) > 0) {
                return dfs(node.left, value);
            } else if (compare(node.value, value) < 0) {
                return dfs(node.right, value) + TreapNode.getSize(node.left) + node.count;
            }

            return 0;
        };
        const res = dfs(this.root, value) - 1;
        return isExist ? res : -1;
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Returns the index of the last occurrence of a value in the set, or -1 if it is not present.
     */
    lastIndexOf(value: T): number {
        const compare = this.compareFn;
        let isExist = false;

        const dfs = (node: TreapNode<T> | null, value: T): number => {
            if (node == null) return 0;

            if (compare(node.value, value) === 0) {
                isExist = true;
                return TreapNode.getSize(node.left) + node.count - 1;
            } else if (compare(node.value, value) > 0) {
                return dfs(node.left, value);
            } else if (compare(node.value, value) < 0) {
                return dfs(node.right, value) + TreapNode.getSize(node.left) + node.count;
            }

            return 0;
        };

        const res = dfs(this.root, value) - 1;
        return isExist ? res : -1;
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Returns the item located at the specified index.
     * @param index The zero-based index of the desired code unit. A negative index will count back from the last item.
     */
    at(index: number): T | undefined {
        if (index < 0) index += this.size;
        if (index < 0 || index >= this.size) return undefined;

        const dfs = (node: TreapNode<T> | null, rank: number): T | undefined => {
            if (node == null) return undefined;

            if (TreapNode.getSize(node.left) >= rank) {
                return dfs(node.left, rank);
            } else if (TreapNode.getSize(node.left) + node.count >= rank) {
                return node.value;
            } else {
                return dfs(node.right, rank - TreapNode.getSize(node.left) - node.count);
            }
        };

        const res = dfs(this.root, index + 2);
        return ([this.leftBound, this.rightBound] as any[]).includes(res) ? undefined : res;
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Find and return the element less than `val`, return `undefined` if no such element found.
     */
    lower(value: T): T | undefined {
        const compare = this.compareFn;
        const dfs = (node: TreapNode<T> | null, value: T): T | undefined => {
            if (node == null) return undefined;
            if (compare(node.value, value) >= 0) return dfs(node.left, value);

            const tmp = dfs(node.right, value);
            if (tmp == null || compare(node.value, tmp) > 0) {
                return node.value;
            } else {
                return tmp;
            }
        };

        const res = dfs(this.root, value) as any;
        return res === this.leftBound ? undefined : res;
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Find and return the element greater than `val`, return `undefined` if no such element found.
     */
    higher(value: T): T | undefined {
        const compare = this.compareFn;
        const dfs = (node: TreapNode<T> | null, value: T): T | undefined => {
            if (node == null) return undefined;
            if (compare(node.value, value) <= 0) return dfs(node.right, value);

            const tmp = dfs(node.left, value);

            if (tmp == null || compare(node.value, tmp) < 0) {
                return node.value;
            } else {
                return tmp;
            }
        };

        const res = dfs(this.root, value) as any;
        return res === this.rightBound ? undefined : res;
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Find and return the element less than or equal to `val`, return `undefined` if no such element found.
     */
    floor(value: T): T | undefined {
        const compare = this.compareFn;
        const dfs = (node: TreapNode<T> | null, value: T): T | undefined => {
            if (node == null) return undefined;
            if (compare(node.value, value) === 0) return node.value;
            if (compare(node.value, value) >= 0) return dfs(node.left, value);

            const tmp = dfs(node.right, value);
            if (tmp == null || compare(node.value, tmp) > 0) {
                return node.value;
            } else {
                return tmp;
            }
        };

        const res = dfs(this.root, value) as any;
        return res === this.leftBound ? undefined : res;
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Find and return the element greater than or equal to `val`, return `undefined` if no such element found.
     */
    ceil(value: T): T | undefined {
        const compare = this.compareFn;
        const dfs = (node: TreapNode<T> | null, value: T): T | undefined => {
            if (node == null) return undefined;
            if (compare(node.value, value) === 0) return node.value;
            if (compare(node.value, value) <= 0) return dfs(node.right, value);

            const tmp = dfs(node.left, value);

            if (tmp == null || compare(node.value, tmp) < 0) {
                return node.value;
            } else {
                return tmp;
            }
        };

        const res = dfs(this.root, value) as any;
        return res === this.rightBound ? undefined : res;
    }

    /**
     * @complexity `O(logn)`
     * @description
     * Returns the last element from set.
     * If the set is empty, undefined is returned.
     */
    first(): T | undefined {
        const iter = this.inOrder();
        iter.next();
        const res = iter.next().value;
        return res === this.rightBound ? undefined : res;
    }

    /**
     * @complexity `O(logn)`
     * @description
     * Returns the last element from set.
     * If the set is empty, undefined is returned .
     */
    last(): T | undefined {
        const iter = this.reverseInOrder();
        iter.next();
        const res = iter.next().value;
        return res === this.leftBound ? undefined : res;
    }

    /**
     * @complexity `O(logn)`
     * @description
     * Removes the first element from an set and returns it.
     * If the set is empty, undefined is returned and the set is not modified.
     */
    shift(): T | undefined {
        const first = this.first();
        if (first === undefined) return undefined;
        this.delete(first);
        return first;
    }

    /**
     * @complexity `O(logn)`
     * @description
     * Removes the last element from an set and returns it.
     * If the set is empty, undefined is returned and the set is not modified.
     */
    pop(index?: number): T | undefined {
        if (index == null) {
            const last = this.last();
            if (last === undefined) return undefined;
            this.delete(last);
            return last;
        }

        const toDelete = this.at(index);
        if (toDelete == null) return;
        this.delete(toDelete);
        return toDelete;
    }

    /**
     *
     * @complexity `O(logn)`
     * @description
     * Returns number of occurrences of value in the sorted set.
     */
    count(value: T): number {
        const compare = this.compareFn;
        const dfs = (node: TreapNode<T> | null, value: T): number => {
            if (node == null) return 0;
            if (compare(node.value, value) === 0) return node.count;
            if (compare(node.value, value) < 0) return dfs(node.right, value);
            return dfs(node.left, value);
        };

        return dfs(this.root, value);
    }

    *[Symbol.iterator](): Generator<T, any, any> {
        yield* this.values();
    }

    /**
     * @description
     * Returns an iterable of keys in the set.
     */
    *keys(): Generator<T, any, any> {
        yield* this.values();
    }

    /**
     * @description
     * Returns an iterable of values in the set.
     */
    *values(): Generator<T, any, any> {
        const iter = this.inOrder();
        iter.next();
        const steps = this.size;
        for (let _ = 0; _ < steps; _++) {
            yield iter.next().value;
        }
    }

    /**
     * @description
     * Returns a generator for reversed order traversing the set.
     */
    *rvalues(): Generator<T, any, any> {
        const iter = this.reverseInOrder();
        iter.next();
        const steps = this.size;
        for (let _ = 0; _ < steps; _++) {
            yield iter.next().value;
        }
    }

    /**
     * @description
     * Returns an iterable of key, value pairs for every entry in the set.
     */
    *entries(): IterableIterator<[number, T]> {
        const iter = this.inOrder();
        iter.next();
        const steps = this.size;
        for (let i = 0; i < steps; i++) {
            yield [i, iter.next().value];
        }
    }

    private *inOrder(root: TreapNode<T> | null = this.root): Generator<T, any, any> {
        if (root == null) return;
        yield* this.inOrder(root.left);
        const count = root.count;
        for (let _ = 0; _ < count; _++) {
            yield root.value;
        }
        yield* this.inOrder(root.right);
    }

    private *reverseInOrder(root: TreapNode<T> | null = this.root): Generator<T, any, any> {
        if (root == null) return;
        yield* this.reverseInOrder(root.right);
        const count = root.count;
        for (let _ = 0; _ < count; _++) {
            yield root.value;
        }
        yield* this.reverseInOrder(root.left);
    }
}

方法二:二分查找 + 滑动窗口

我们注意到,如果一个长度为 $k$ 的子数组满足条件,那么长度 $k' < k$ 的子数组也满足条件,这存在着单调性,因此,我们可以使用二分查找,找到最长的满足条件的子数组。

我们定义二分查找的左边界 $l = 0$,右边界 $r = n$。对于每个 $mid = \frac{l + r + 1}{2}$,我们检查是否存在一个长度为 $mid$ 的子数组满足条件。如果存在,我们更新 $l = mid$,否则更新 $r = mid - 1$。那么问题转换为数组中是否存在一个长度为 $mid$ 的子数组满足条件,这其实是求滑动窗口中的最大值和最小值的差值不超过 $limit$。我们可以用两个单调队列分别维护窗口内的最大值和最小值。

时间复杂度 $O(n \times \log n)$,空间复杂度 $O(n)$。其中 $n$ 是数组 $nums$ 的长度。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
class Solution:
    def longestSubarray(self, nums: List[int], limit: int) -> int:
        def check(k: int) -> bool:
            min_q = deque()
            max_q = deque()
            for i, x in enumerate(nums):
                if min_q and i - min_q[0] + 1 > k:
                    min_q.popleft()
                if max_q and i - max_q[0] + 1 > k:
                    max_q.popleft()
                while min_q and nums[min_q[-1]] >= x:
                    min_q.pop()
                while max_q and nums[max_q[-1]] <= x:
                    max_q.pop()
                min_q.append(i)
                max_q.append(i)
                if i >= k - 1 and nums[max_q[0]] - nums[min_q[0]] <= limit:
                    return True
            return False

        l, r = 1, len(nums)
        while l < r:
            mid = (l + r + 1) >> 1
            if check(mid):
                l = mid
            else:
                r = mid - 1
        return l
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
class Solution {
    private int[] nums;
    private int limit;

    public int longestSubarray(int[] nums, int limit) {
        this.nums = nums;
        this.limit = limit;
        int l = 1, r = nums.length;
        while (l < r) {
            int mid = (l + r + 1) >> 1;
            if (check(mid)) {
                l = mid;
            } else {
                r = mid - 1;
            }
        }
        return l;
    }

    private boolean check(int k) {
        Deque<Integer> minQ = new ArrayDeque<>();
        Deque<Integer> maxQ = new ArrayDeque<>();
        for (int i = 0; i < nums.length; ++i) {
            if (!minQ.isEmpty() && i - minQ.peekFirst() + 1 > k) {
                minQ.pollFirst();
            }
            if (!maxQ.isEmpty() && i - maxQ.peekFirst() + 1 > k) {
                maxQ.pollFirst();
            }
            while (!minQ.isEmpty() && nums[minQ.peekLast()] >= nums[i]) {
                minQ.pollLast();
            }
            while (!maxQ.isEmpty() && nums[maxQ.peekLast()] <= nums[i]) {
                maxQ.pollLast();
            }
            minQ.offer(i);
            maxQ.offer(i);
            if (i >= k - 1 && nums[maxQ.peekFirst()] - nums[minQ.peekFirst()] <= limit) {
                return true;
            }
        }
        return false;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
class Solution {
public:
    int longestSubarray(vector<int>& nums, int limit) {
        auto check = [&](int k) {
            deque<int> min_q;
            deque<int> max_q;
            for (int i = 0; i < nums.size(); ++i) {
                if (!min_q.empty() && i - min_q.front() + 1 > k) {
                    min_q.pop_front();
                }
                if (!max_q.empty() && i - max_q.front() + 1 > k) {
                    max_q.pop_front();
                }
                while (!min_q.empty() && nums[min_q.back()] >= nums[i]) {
                    min_q.pop_back();
                }
                while (!max_q.empty() && nums[max_q.back()] <= nums[i]) {
                    max_q.pop_back();
                }
                min_q.push_back(i);
                max_q.push_back(i);
                if (i >= k - 1 && nums[max_q.front()] - nums[min_q.front()] <= limit) {
                    return true;
                }
            }
            return false;
        };
        int l = 1, r = nums.size();
        while (l < r) {
            int mid = (l + r + 1) >> 1;
            if (check(mid)) {
                l = mid;
            } else {
                r = mid - 1;
            }
        }
        return l;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
func longestSubarray(nums []int, limit int) int {
    l, r := 0, len(nums)
    check := func(k int) bool {
        minq := Deque{}
        maxq := Deque{}
        for i, x := range nums {
            for !minq.Empty() && i-minq.Front()+1 > k {
                minq.PopFront()
            }
            for !maxq.Empty() && i-maxq.Front()+1 > k {
                maxq.PopFront()
            }
            for !minq.Empty() && nums[minq.Back()] >= x {
                minq.PopBack()
            }
            for !maxq.Empty() && nums[maxq.Back()] <= x {
                maxq.PopBack()
            }
            minq.PushBack(i)
            maxq.PushBack(i)
            if i >= k-1 && nums[maxq.Front()]-nums[minq.Front()] <= limit {
                return true
            }
        }
        return false
    }
    for l < r {
        mid := (l + r + 1) >> 1
        if check(mid) {
            l = mid
        } else {
            r = mid - 1
        }
    }
    return l
}

// template
type Deque struct{ l, r []int }

func (q Deque) Empty() bool {
    return len(q.l) == 0 && len(q.r) == 0
}

func (q Deque) Size() int {
    return len(q.l) + len(q.r)
}

func (q *Deque) PushFront(v int) {
    q.l = append(q.l, v)
}

func (q *Deque) PushBack(v int) {
    q.r = append(q.r, v)
}

func (q *Deque) PopFront() (v int) {
    if len(q.l) > 0 {
        q.l, v = q.l[:len(q.l)-1], q.l[len(q.l)-1]
    } else {
        v, q.r = q.r[0], q.r[1:]
    }
    return
}

func (q *Deque) PopBack() (v int) {
    if len(q.r) > 0 {
        q.r, v = q.r[:len(q.r)-1], q.r[len(q.r)-1]
    } else {
        v, q.l = q.l[0], q.l[1:]
    }
    return
}

func (q Deque) Front() int {
    if len(q.l) > 0 {
        return q.l[len(q.l)-1]
    }
    return q.r[0]
}

func (q Deque) Back() int {
    if len(q.r) > 0 {
        return q.r[len(q.r)-1]
    }
    return q.l[0]
}

func (q Deque) Get(i int) int {
    if i < len(q.l) {
        return q.l[len(q.l)-1-i]
    }
    return q.r[i-len(q.l)]
}
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
function longestSubarray(nums: number[], limit: number): number {
    const n = nums.length;
    let [l, r] = [0, n];
    const check = (k: number): boolean => {
        const minq = new Deque<number>();
        const maxq = new Deque<number>();
        for (let i = 0; i < n; ++i) {
            while (!minq.isEmpty() && i - minq.frontValue()! + 1 > k) {
                minq.popFront();
            }
            while (!maxq.isEmpty() && i - maxq.frontValue()! + 1 > k) {
                maxq.popFront();
            }
            while (!minq.isEmpty() && nums[minq.backValue()!] >= nums[i]) {
                minq.popBack();
            }
            while (!maxq.isEmpty() && nums[maxq.backValue()!] <= nums[i]) {
                maxq.popBack();
            }
            minq.pushBack(i);
            maxq.pushBack(i);
            if (i >= k - 1 && nums[maxq.frontValue()!] - nums[minq.frontValue()!] <= limit) {
                return true;
            }
        }
        return false;
    };
    while (l < r) {
        const mid = (l + r + 1) >> 1;
        if (check(mid)) {
            l = mid;
        } else {
            r = mid - 1;
        }
    }
    return l;
}

class Node<T> {
    value: T;
    next: Node<T> | null;
    prev: Node<T> | null;

    constructor(value: T) {
        this.value = value;
        this.next = null;
        this.prev = null;
    }
}

class Deque<T> {
    private front: Node<T> | null;
    private back: Node<T> | null;
    private size: number;

    constructor() {
        this.front = null;
        this.back = null;
        this.size = 0;
    }

    pushFront(val: T): void {
        const newNode = new Node(val);
        if (this.isEmpty()) {
            this.front = newNode;
            this.back = newNode;
        } else {
            newNode.next = this.front;
            this.front!.prev = newNode;
            this.front = newNode;
        }
        this.size++;
    }

    pushBack(val: T): void {
        const newNode = new Node(val);
        if (this.isEmpty()) {
            this.front = newNode;
            this.back = newNode;
        } else {
            newNode.prev = this.back;
            this.back!.next = newNode;
            this.back = newNode;
        }
        this.size++;
    }

    popFront(): T | undefined {
        if (this.isEmpty()) {
            return undefined;
        }
        const value = this.front!.value;
        this.front = this.front!.next;
        if (this.front !== null) {
            this.front.prev = null;
        } else {
            this.back = null;
        }
        this.size--;
        return value;
    }

    popBack(): T | undefined {
        if (this.isEmpty()) {
            return undefined;
        }
        const value = this.back!.value;
        this.back = this.back!.prev;
        if (this.back !== null) {
            this.back.next = null;
        } else {
            this.front = null;
        }
        this.size--;
        return value;
    }

    frontValue(): T | undefined {
        return this.front?.value;
    }

    backValue(): T | undefined {
        return this.back?.value;
    }

    getSize(): number {
        return this.size;
    }

    isEmpty(): boolean {
        return this.size === 0;
    }
}

方法三:滑动窗口 + 双向队列

我们可以使用双向队列维护窗口内的最大值和最小值。我们维护两个双向队列,分别存储窗口内的最大值和最小值的下标。定义两个指针 $l$ 和 $r$ 分别指向窗口的左边界和右边界。

每次向右移动右边界 $r$,判断最大值队列的队尾下标对应的元素是否小于当前元素,如果小于,则将队尾元素出队,直到最大值队列的队尾元素对应的元素不小于当前元素。同理,判断最小值队列的队尾下标对应的元素是否大于当前元素,如果大于,则将队尾元素出队,直到最小值队列的队尾元素对应的元素不大于当前元素。然后,将当前元素的下标入队。

如果最大值队列的队首元素和最小值队列的队首元素的差值大于 $limit$,则向右移动左边界 $l$,然后如果最大值队列的队首元素小于 $l$,则将最大值队列的队首元素出队,如果最小值队列的队首元素小于 $l$,则将最小值队列的队首元素出队。

答案为 $n - l$。

时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是数组 $nums$ 的长度。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
class Solution:
    def longestSubarray(self, nums: List[int], limit: int) -> int:
        maxq = deque()
        minq = deque()
        l, n = 0, len(nums)
        for r, x in enumerate(nums):
            while maxq and nums[maxq[-1]] < x:
                maxq.pop()
            while minq and nums[minq[-1]] > x:
                minq.pop()
            maxq.append(r)
            minq.append(r)
            if nums[maxq[0]] - nums[minq[0]] > limit:
                l += 1
                if maxq[0] < l:
                    maxq.popleft()
                if minq[0] < l:
                    minq.popleft()
        return n - l
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
class Solution {
    public int longestSubarray(int[] nums, int limit) {
        Deque<Integer> maxQ = new ArrayDeque<>();
        Deque<Integer> minQ = new ArrayDeque<>();
        int n = nums.length;
        int l = 0;
        for (int r = 0; r < n; ++r) {
            while (!maxQ.isEmpty() && nums[maxQ.peekLast()] < nums[r]) {
                maxQ.pollLast();
            }
            while (!minQ.isEmpty() && nums[minQ.peekLast()] > nums[r]) {
                minQ.pollLast();
            }
            maxQ.offerLast(r);
            minQ.offerLast(r);
            if (nums[maxQ.peekFirst()] - nums[minQ.peekFirst()] > limit) {
                ++l;
                if (maxQ.peekFirst() < l) {
                    maxQ.pollFirst();
                }
                if (minQ.peekFirst() < l) {
                    minQ.pollFirst();
                }
            }
        }
        return n - l;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
class Solution {
public:
    int longestSubarray(vector<int>& nums, int limit) {
        deque<int> max_q;
        deque<int> min_q;
        int n = nums.size();
        int l = 0;

        for (int r = 0; r < n; ++r) {
            while (!max_q.empty() && nums[max_q.back()] < nums[r]) {
                max_q.pop_back();
            }
            while (!min_q.empty() && nums[min_q.back()] > nums[r]) {
                min_q.pop_back();
            }
            max_q.push_back(r);
            min_q.push_back(r);

            if (nums[max_q.front()] - nums[min_q.front()] > limit) {
                ++l;
                if (max_q.front() < l) {
                    max_q.pop_front();
                }
                if (min_q.front() < l) {
                    min_q.pop_front();
                }
            }
        }
        return n - l;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
func longestSubarray(nums []int, limit int) int {
    var maxq, minq Deque
    n := len(nums)
    l := 0
    for r, x := range nums {
        for !maxq.Empty() && nums[maxq.Back()] < x {
            maxq.PopBack()
        }
        for !minq.Empty() && nums[minq.Back()] > x {
            minq.PopBack()
        }
        maxq.PushBack(r)
        minq.PushBack(r)

        if nums[maxq.Front()]-nums[minq.Front()] > limit {
            l++
            if maxq.Front() < l {
                maxq.PopFront()
            }
            if minq.Front() < l {
                minq.PopFront()
            }
        }
    }
    return n - l
}

type Deque struct{ l, r []int }

func (q Deque) Empty() bool {
    return len(q.l) == 0 && len(q.r) == 0
}

func (q Deque) Size() int {
    return len(q.l) + len(q.r)
}

func (q *Deque) PushFront(v int) {
    q.l = append(q.l, v)
}

func (q *Deque) PushBack(v int) {
    q.r = append(q.r, v)
}

func (q *Deque) PopFront() (v int) {
    if len(q.l) > 0 {
        q.l, v = q.l[:len(q.l)-1], q.l[len(q.l)-1]
    } else {
        v, q.r = q.r[0], q.r[1:]
    }
    return
}

func (q *Deque) PopBack() (v int) {
    if len(q.r) > 0 {
        q.r, v = q.r[:len(q.r)-1], q.r[len(q.r)-1]
    } else {
        v, q.l = q.l[0], q.l[1:]
    }
    return
}

func (q Deque) Front() int {
    if len(q.l) > 0 {
        return q.l[len(q.l)-1]
    }
    return q.r[0]
}

func (q Deque) Back() int {
    if len(q.r) > 0 {
        return q.r[len(q.r)-1]
    }
    return q.l[0]
}

func (q Deque) Get(i int) int {
    if i < len(q.l) {
        return q.l[len(q.l)-1-i]
    }
    return q.r[i-len(q.l)]
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
function longestSubarray(nums: number[], limit: number): number {
    const n = nums.length;
    let [h1, t1] = [0, -1];
    let [h2, t2] = [0, -1];
    let l = 0;
    const maxq = Array(n);
    const minq = Array(n);
    for (let r = 0; r < n; ++r) {
        while (h1 <= t1 && nums[maxq[t1]] < nums[r]) {
            --t1;
        }
        while (h2 <= t2 && nums[minq[t2]] > nums[r]) {
            --t2;
        }
        maxq[++t1] = r;
        minq[++t2] = r;
        if (nums[maxq[h1]] - nums[minq[h2]] > limit) {
            ++l;
            if (maxq[h1] < l) {
                ++h1;
            }
            if (minq[h2] < l) {
                ++h2;
            }
        }
    }
    return n - l;
}

评论