贪心
树
深度优先搜索
二叉搜索树
分治
二叉树
题目描述
给你一棵二叉搜索树,请你返回一棵 平衡后 的二叉搜索树,新生成的树应该与原来的树有着相同的节点值。如果有多种构造方法,请你返回任意一种。
如果一棵二叉搜索树中,每个节点的两棵子树高度差不超过 1
,我们就称这棵二叉搜索树是 平衡的 。
示例 1:
输入: root = [1,null,2,null,3,null,4,null,null]
输出: [2,1,3,null,null,null,4]
解释: 这不是唯一的正确答案,[3,1,4,null,2,null,null] 也是一个可行的构造方案。
示例 2:
输入: root = [2,1,3]
输出: [2,1,3]
提示:
树节点的数目在 [1, 104 ]
范围内。
1 <= Node.val <= 105
解法
方法一:中序遍历 + 构造平衡二叉树
由于原树是一棵二叉搜索树,因此我们可以将其中序遍历的结果保存在一个数组 $nums$ 中,然后我们设计一个函数 $build(i, j)$,它用来构造 $nums$ 中下标范围 $[i, j]$ 内的平衡二叉搜索树,那么答案就是 $build(0, |nums| - 1)$。
函数 $build(i, j)$ 的执行逻辑如下:
如果 $i > j$,那么平衡二叉搜索树为空,返回空节点;
否则,我们取 $mid = (i + j) / 2$ 作为根节点,然后递归构建左子树和右子树,返回根节点。
时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是二叉搜索树的节点数。
Python3 Java C++ Go TypeScript
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution :
def balanceBST ( self , root : TreeNode ) -> TreeNode :
def dfs ( root : TreeNode ):
if root is None :
return
dfs ( root . left )
nums . append ( root . val )
dfs ( root . right )
def build ( i : int , j : int ) -> TreeNode :
if i > j :
return None
mid = ( i + j ) >> 1
left = build ( i , mid - 1 )
right = build ( mid + 1 , j )
return TreeNode ( nums [ mid ], left , right )
nums = []
dfs ( root )
return build ( 0 , len ( nums ) - 1 )
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42 /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private List < Integer > nums = new ArrayList <> ();
public TreeNode balanceBST ( TreeNode root ) {
dfs ( root );
return build ( 0 , nums . size () - 1 );
}
private void dfs ( TreeNode root ) {
if ( root == null ) {
return ;
}
dfs ( root . left );
nums . add ( root . val );
dfs ( root . right );
}
private TreeNode build ( int i , int j ) {
if ( i > j ) {
return null ;
}
int mid = ( i + j ) >> 1 ;
TreeNode left = build ( i , mid - 1 );
TreeNode right = build ( mid + 1 , j );
return new TreeNode ( nums . get ( mid ), left , right );
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public :
TreeNode * balanceBST ( TreeNode * root ) {
dfs ( root );
return build ( 0 , nums . size () - 1 );
}
private :
vector < int > nums ;
void dfs ( TreeNode * root ) {
if ( ! root ) {
return ;
}
dfs ( root -> left );
nums . push_back ( root -> val );
dfs ( root -> right );
}
TreeNode * build ( int i , int j ) {
if ( i > j ) {
return nullptr ;
}
int mid = ( i + j ) >> 1 ;
TreeNode * left = build ( i , mid - 1 );
TreeNode * right = build ( mid + 1 , j );
return new TreeNode ( nums [ mid ], left , right );
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 /**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func balanceBST ( root * TreeNode ) * TreeNode {
ans := [] int {}
var dfs func ( * TreeNode )
dfs = func ( root * TreeNode ) {
if root == nil {
return
}
dfs ( root . Left )
ans = append ( ans , root . Val )
dfs ( root . Right )
}
var build func ( i , j int ) * TreeNode
build = func ( i , j int ) * TreeNode {
if i > j {
return nil
}
mid := ( i + j ) >> 1
left := build ( i , mid - 1 )
right := build ( mid + 1 , j )
return & TreeNode { Val : ans [ mid ], Left : left , Right : right }
}
dfs ( root )
return build ( 0 , len ( ans ) - 1 )
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36 /**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function balanceBST ( root : TreeNode | null ) : TreeNode | null {
const nums : number [] = [];
const dfs = ( root : TreeNode | null ) : void => {
if ( root == null ) {
return ;
}
dfs ( root . left );
nums . push ( root . val );
dfs ( root . right );
};
const build = ( i : number , j : number ) : TreeNode | null => {
if ( i > j ) {
return null ;
}
const mid : number = ( i + j ) >> 1 ;
const left : TreeNode | null = build ( i , mid - 1 );
const right : TreeNode | null = build ( mid + 1 , j );
return new TreeNode ( nums [ mid ], left , right );
};
dfs ( root );
return build ( 0 , nums . length - 1 );
}
GitHub