跳转至

1382. 将二叉搜索树变平衡

题目描述

给你一棵二叉搜索树,请你返回一棵 平衡后 的二叉搜索树,新生成的树应该与原来的树有着相同的节点值。如果有多种构造方法,请你返回任意一种。

如果一棵二叉搜索树中,每个节点的两棵子树高度差不超过 1 ,我们就称这棵二叉搜索树是 平衡的

 

示例 1:

输入:root = [1,null,2,null,3,null,4,null,null]
输出:[2,1,3,null,null,null,4]
解释:这不是唯一的正确答案,[3,1,4,null,2,null,null] 也是一个可行的构造方案。

示例 2:

输入: root = [2,1,3]
输出: [2,1,3]

 

提示:

  • 树节点的数目在 [1, 104] 范围内。
  • 1 <= Node.val <= 105

解法

方法一:中序遍历 + 构造平衡二叉树

由于原树是一棵二叉搜索树,因此我们可以将其中序遍历的结果保存在一个数组 $nums$ 中,然后我们设计一个函数 $build(i, j)$,它用来构造 $nums$ 中下标范围 $[i, j]$ 内的平衡二叉搜索树,那么答案就是 $build(0, |nums| - 1)$。

函数 $build(i, j)$ 的执行逻辑如下:

  • 如果 $i > j$,那么平衡二叉搜索树为空,返回空节点;
  • 否则,我们取 $mid = (i + j) / 2$ 作为根节点,然后递归构建左子树和右子树,返回根节点。

时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是二叉搜索树的节点数。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def balanceBST(self, root: TreeNode) -> TreeNode:
        def dfs(root: TreeNode):
            if root is None:
                return
            dfs(root.left)
            nums.append(root.val)
            dfs(root.right)

        def build(i: int, j: int) -> TreeNode:
            if i > j:
                return None
            mid = (i + j) >> 1
            left = build(i, mid - 1)
            right = build(mid + 1, j)
            return TreeNode(nums[mid], left, right)

        nums = []
        dfs(root)
        return build(0, len(nums) - 1)
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    private List<Integer> nums = new ArrayList<>();

    public TreeNode balanceBST(TreeNode root) {
        dfs(root);
        return build(0, nums.size() - 1);
    }

    private void dfs(TreeNode root) {
        if (root == null) {
            return;
        }
        dfs(root.left);
        nums.add(root.val);
        dfs(root.right);
    }

    private TreeNode build(int i, int j) {
        if (i > j) {
            return null;
        }
        int mid = (i + j) >> 1;
        TreeNode left = build(i, mid - 1);
        TreeNode right = build(mid + 1, j);
        return new TreeNode(nums.get(mid), left, right);
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    TreeNode* balanceBST(TreeNode* root) {
        dfs(root);
        return build(0, nums.size() - 1);
    }

private:
    vector<int> nums;

    void dfs(TreeNode* root) {
        if (!root) {
            return;
        }
        dfs(root->left);
        nums.push_back(root->val);
        dfs(root->right);
    }

    TreeNode* build(int i, int j) {
        if (i > j) {
            return nullptr;
        }
        int mid = (i + j) >> 1;
        TreeNode* left = build(i, mid - 1);
        TreeNode* right = build(mid + 1, j);
        return new TreeNode(nums[mid], left, right);
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func balanceBST(root *TreeNode) *TreeNode {
    ans := []int{}
    var dfs func(*TreeNode)
    dfs = func(root *TreeNode) {
        if root == nil {
            return
        }
        dfs(root.Left)
        ans = append(ans, root.Val)
        dfs(root.Right)
    }
    var build func(i, j int) *TreeNode
    build = func(i, j int) *TreeNode {
        if i > j {
            return nil
        }
        mid := (i + j) >> 1
        left := build(i, mid-1)
        right := build(mid+1, j)
        return &TreeNode{Val: ans[mid], Left: left, Right: right}
    }
    dfs(root)
    return build(0, len(ans)-1)
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
/**
 * Definition for a binary tree node.
 * class TreeNode {
 *     val: number
 *     left: TreeNode | null
 *     right: TreeNode | null
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
 *         this.val = (val===undefined ? 0 : val)
 *         this.left = (left===undefined ? null : left)
 *         this.right = (right===undefined ? null : right)
 *     }
 * }
 */

function balanceBST(root: TreeNode | null): TreeNode | null {
    const nums: number[] = [];
    const dfs = (root: TreeNode | null): void => {
        if (root == null) {
            return;
        }
        dfs(root.left);
        nums.push(root.val);
        dfs(root.right);
    };
    const build = (i: number, j: number): TreeNode | null => {
        if (i > j) {
            return null;
        }
        const mid: number = (i + j) >> 1;
        const left: TreeNode | null = build(i, mid - 1);
        const right: TreeNode | null = build(mid + 1, j);
        return new TreeNode(nums[mid], left, right);
    };
    dfs(root);
    return build(0, nums.length - 1);
}

评论