题目描述
用以太网线缆将 n
台计算机连接成一个网络,计算机的编号从 0
到 n-1
。线缆用 connections
表示,其中 connections[i] = [a, b]
连接了计算机 a
和 b
。
网络中的任何一台计算机都可以通过网络直接或者间接访问同一个网络中其他任意一台计算机。
给你这个计算机网络的初始布线 connections
,你可以拔开任意两台直连计算机之间的线缆,并用它连接一对未直连的计算机。请你计算并返回使所有计算机都连通所需的最少操作次数。如果不可能,则返回 -1 。
示例 1:
输入:n = 4, connections = [[0,1],[0,2],[1,2]]
输出:1
解释:拔下计算机 1 和 2 之间的线缆,并将它插到计算机 1 和 3 上。
示例 2:
输入:n = 6, connections = [[0,1],[0,2],[0,3],[1,2],[1,3]]
输出:2
示例 3:
输入:n = 6, connections = [[0,1],[0,2],[0,3],[1,2]]
输出:-1
解释:线缆数量不足。
示例 4:
输入:n = 5, connections = [[0,1],[0,2],[3,4],[2,3]]
输出:0
提示:
1 <= n <= 10^5
1 <= connections.length <= min(n*(n-1)/2, 10^5)
connections[i].length == 2
0 <= connections[i][0], connections[i][1] < n
connections[i][0] != connections[i][1]
- 没有重复的连接。
- 两台计算机不会通过多条线缆连接。
解法
方法一:并查集
我们可以用并查集维护计算机之间的联通关系。遍历所有的连接,对于每个连接 $(a, b)$,如果 $a$ 和 $b$ 已经联通,那么这个连接是多余的,我们将多余的连接数加一;否则,我们将 $a$ 和 $b$ 连通,然后将联通分量数减一。
最后,如果联通分量数减一大于多余的连接数,说明我们无法使所有计算机联通,返回 -1;否则,返回联通分量数减一。
时间复杂度 $O(m \times \log n)$,空间复杂度 $O(n)$。其中 $n$ 和 $m$ 分别是计算机的数量和连接的数量。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 | class Solution:
def makeConnected(self, n: int, connections: List[List[int]]) -> int:
def find(x: int) -> int:
if p[x] != x:
p[x] = find(p[x])
return p[x]
cnt = 0
p = list(range(n))
for a, b in connections:
pa, pb = find(a), find(b)
if pa == pb:
cnt += 1
else:
p[pa] = pb
n -= 1
return -1 if n - 1 > cnt else n - 1
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | class Solution {
private int[] p;
public int makeConnected(int n, int[][] connections) {
p = new int[n];
for (int i = 0; i < n; ++i) {
p[i] = i;
}
int cnt = 0;
for (int[] e : connections) {
int pa = find(e[0]), pb = find(e[1]);
if (pa == pb) {
++cnt;
} else {
p[pa] = pb;
--n;
}
}
return n - 1 > cnt ? -1 : n - 1;
}
private int find(int x) {
if (p[x] != x) {
p[x] = find(p[x]);
}
return p[x];
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | class Solution {
public:
int makeConnected(int n, vector<vector<int>>& connections) {
vector<int> p(n);
iota(p.begin(), p.end(), 0);
int cnt = 0;
function<int(int)> find = [&](int x) -> int {
if (p[x] != x) {
p[x] = find(p[x]);
}
return p[x];
};
for (const auto& c : connections) {
int pa = find(c[0]), pb = find(c[1]);
if (pa == pb) {
++cnt;
} else {
p[pa] = pb;
--n;
}
}
return cnt >= n - 1 ? n - 1 : -1;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 | func makeConnected(n int, connections [][]int) int {
p := make([]int, n)
for i := range p {
p[i] = i
}
cnt := 0
var find func(x int) int
find = func(x int) int {
if p[x] != x {
p[x] = find(p[x])
}
return p[x]
}
for _, e := range connections {
pa, pb := find(e[0]), find(e[1])
if pa == pb {
cnt++
} else {
p[pa] = pb
n--
}
}
if n-1 > cnt {
return -1
}
return n - 1
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | function makeConnected(n: number, connections: number[][]): number {
const p: number[] = Array.from({ length: n }, (_, i) => i);
const find = (x: number): number => {
if (p[x] !== x) {
p[x] = find(p[x]);
}
return p[x];
};
let cnt = 0;
for (const [a, b] of connections) {
const [pa, pb] = [find(a), find(b)];
if (pa === pb) {
++cnt;
} else {
p[pa] = pb;
--n;
}
}
return cnt >= n - 1 ? n - 1 : -1;
}
|