树
深度优先搜索
广度优先搜索
二叉树
题目描述
给你一棵二叉树的根节点 root
,请你返回 层数最深的叶子节点的和 。
示例 1:
输入: root = [1,2,3,4,5,null,6,7,null,null,null,null,8]
输出: 15
示例 2:
输入: root = [6,7,8,2,7,1,3,9,null,1,4,null,null,null,5]
输出: 19
提示:
树中节点数目在范围 [1, 104 ]
之间。
1 <= Node.val <= 100
解法
方法一:BFS
我们可以使用广度优先搜索,逐层遍历二叉树,并在遍历到每一层时计算该层的节点值之和。遍历完成后,返回最后一层的节点值之和。
时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是树中节点的数目。
Python3 Java C++ Go TypeScript Rust
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution :
def deepestLeavesSum ( self , root : Optional [ TreeNode ]) -> int :
q = deque ([ root ])
while q :
ans = 0
for _ in range ( len ( q )):
node = q . popleft ()
ans += node . val
if node . left :
q . append ( node . left )
if node . right :
q . append ( node . right )
return ans
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36 /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int deepestLeavesSum ( TreeNode root ) {
Deque < TreeNode > q = new ArrayDeque <> ();
q . offer ( root );
int ans = 0 ;
while ( ! q . isEmpty ()) {
ans = 0 ;
for ( int k = q . size (); k > 0 ; -- k ) {
TreeNode node = q . poll ();
ans += node . val ;
if ( node . left != null ) {
q . offer ( node . left );
}
if ( node . right != null ) {
q . offer ( node . right );
}
}
}
return ans ;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public :
int deepestLeavesSum ( TreeNode * root ) {
int ans = 0 ;
queue < TreeNode *> q {{ root }};
while ( ! q . empty ()) {
ans = 0 ;
for ( int k = q . size (); k ; -- k ) {
TreeNode * node = q . front ();
q . pop ();
ans += node -> val ;
if ( node -> left ) {
q . push ( node -> left );
}
if ( node -> right ) {
q . push ( node -> right );
}
}
}
return ans ;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 /**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func deepestLeavesSum ( root * TreeNode ) ( ans int ) {
q := [] * TreeNode { root }
for len ( q ) > 0 {
ans = 0
for k := len ( q ); k > 0 ; k -- {
node := q [ 0 ]
q = q [ 1 :]
ans += node . Val
if node . Left != nil {
q = append ( q , node . Left )
}
if node . Right != nil {
q = append ( q , node . Right )
}
}
}
return
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 /**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function deepestLeavesSum ( root : TreeNode | null ) : number {
let q : TreeNode [] = [ root ];
let ans = 0 ;
while ( q . length ) {
const nq : TreeNode [] = [];
ans = 0 ;
for ( const { val , left , right } of q ) {
ans += val ;
left && nq . push ( left );
right && nq . push ( right );
}
q = nq ;
}
return ans ;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45 // Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std :: rc :: Rc ;
use std :: cell :: RefCell ;
use std :: collections :: VecDeque ;
impl Solution {
pub fn deepest_leaves_sum ( root : Option < Rc < RefCell < TreeNode >>> ) -> i32 {
let mut q = VecDeque :: new ();
q . push_back ( root );
let mut ans = 0 ;
while ! q . is_empty () {
ans = 0 ;
for _ in 0 .. q . len () {
if let Some ( Some ( node )) = q . pop_front () {
let node = node . borrow ();
ans += node . val ;
if node . left . is_some () {
q . push_back ( node . left . clone ());
}
if node . right . is_some () {
q . push_back ( node . right . clone ());
}
}
}
}
ans
}
}
方法二:DFS
我们可以使用深度优先搜索,递归遍历二叉树,并在遍历的过程中记录当前节点的深度,以及最大深度和最深叶子节点的和。遍历到当前节点时,如果当前节点的深度等于最大深度,则将当前节点的值加到最深叶子节点的和中;如果当前节点的深度大于最大深度,则将最大深度更新为当前节点的深度,并将最深叶子节点的和更新为当前节点的值。
时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是树中节点的数目。
Python3 Java C++ Go TypeScript C
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution :
def deepestLeavesSum ( self , root : Optional [ TreeNode ]) -> int :
def dfs ( root , i ):
nonlocal ans , mx
if root is None :
return
if i == mx :
ans += root . val
elif i > mx :
ans = root . val
mx = i
dfs ( root . left , i + 1 )
dfs ( root . right , i + 1 )
ans = mx = 0
dfs ( root , 1 )
return ans
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
int mx ;
int ans ;
public int deepestLeavesSum ( TreeNode root ) {
dfs ( root , 1 );
return ans ;
}
private void dfs ( TreeNode root , int i ) {
if ( root == null ) {
return ;
}
if ( i > mx ) {
mx = i ;
ans = root . val ;
} else if ( i == mx ) {
ans += root . val ;
}
dfs ( root . left , i + 1 );
dfs ( root . right , i + 1 );
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public :
int deepestLeavesSum ( TreeNode * root ) {
int mx = 0 , ans = 0 ;
auto dfs = [ & ]( auto && dfs , TreeNode * root , int i ) {
if ( ! root ) {
return ;
}
if ( i == mx ) {
ans += root -> val ;
} else if ( i > mx ) {
mx = i ;
ans = root -> val ;
}
dfs ( dfs , root -> left , i + 1 );
dfs ( dfs , root -> right , i + 1 );
};
dfs ( dfs , root , 1 );
return ans ;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 /**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func deepestLeavesSum ( root * TreeNode ) int {
ans , mx := 0 , 0
var dfs func ( * TreeNode , int )
dfs = func ( root * TreeNode , i int ) {
if root == nil {
return
}
if i == mx {
ans += root . Val
} else if i > mx {
mx = i
ans = root . Val
}
dfs ( root . Left , i + 1 )
dfs ( root . Right , i + 1 )
}
dfs ( root , 1 )
return ans
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 /**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function deepestLeavesSum ( root : TreeNode | null ) : number {
let [ ans , mx ] = [ 0 , 0 ];
const dfs = ( root : TreeNode | null , i : number ) => {
if ( ! root ) {
return ;
}
if ( i > mx ) {
mx = i ;
ans = root . val ;
} else if ( i === mx ) {
ans += root . val ;
}
dfs ( root . left , i + 1 );
dfs ( root . right , i + 1 );
};
dfs ( root , 1 );
return ans ;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* struct TreeNode *left;
* struct TreeNode *right;
* };
*/
void dfs ( struct TreeNode * root , int depth , int * maxDepth , int * res ) {
if ( ! root -> left && ! root -> right ) {
if ( depth == * maxDepth ) {
* res += root -> val ;
} else if ( depth > * maxDepth ) {
* maxDepth = depth ;
* res = root -> val ;
}
return ;
}
if ( root -> left ) {
dfs ( root -> left , depth + 1 , maxDepth , res );
}
if ( root -> right ) {
dfs ( root -> right , depth + 1 , maxDepth , res );
}
}
int deepestLeavesSum ( struct TreeNode * root ) {
int res = 0 ;
int maxDepth = 0 ;
dfs ( root , 0 , & maxDepth , & res );
return res ;
}
GitHub