题目描述
给你一个 m * n
的网格,其中每个单元格不是 0
(空)就是 1
(障碍物)。每一步,您都可以在空白单元格中上、下、左、右移动。
如果您 最多 可以消除 k
个障碍物,请找出从左上角 (0, 0)
到右下角 (m-1, n-1)
的最短路径,并返回通过该路径所需的步数。如果找不到这样的路径,则返回 -1
。
示例 1:
输入: grid = [[0,0,0],[1,1,0],[0,0,0],[0,1,1],[0,0,0]], k = 1
输出:6
解释:
不消除任何障碍的最短路径是 10。
消除位置 (3,2) 处的障碍后,最短路径是 6 。该路径是 (0,0) -> (0,1) -> (0,2) -> (1,2) -> (2,2) -> (3,2) -> (4,2).
示例 2:
输入:grid = [[0,1,1],[1,1,1],[1,0,0]], k = 1
输出:-1
解释:我们至少需要消除两个障碍才能找到这样的路径。
提示:
grid.length == m
grid[0].length == n
1 <= m, n <= 40
1 <= k <= m*n
grid[i][j]
是 0
或 1
grid[0][0] == grid[m-1][n-1] == 0
解法
方法一
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | class Solution:
def shortestPath(self, grid: List[List[int]], k: int) -> int:
m, n = len(grid), len(grid[0])
if k >= m + n - 3:
return m + n - 2
q = deque([(0, 0, k)])
vis = {(0, 0, k)}
ans = 0
while q:
ans += 1
for _ in range(len(q)):
i, j, k = q.popleft()
for a, b in [[0, -1], [0, 1], [1, 0], [-1, 0]]:
x, y = i + a, j + b
if 0 <= x < m and 0 <= y < n:
if x == m - 1 and y == n - 1:
return ans
if grid[x][y] == 0 and (x, y, k) not in vis:
q.append((x, y, k))
vis.add((x, y, k))
if grid[x][y] == 1 and k > 0 and (x, y, k - 1) not in vis:
q.append((x, y, k - 1))
vis.add((x, y, k - 1))
return -1
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39 | class Solution {
public int shortestPath(int[][] grid, int k) {
int m = grid.length;
int n = grid[0].length;
if (k >= m + n - 3) {
return m + n - 2;
}
Deque<int[]> q = new ArrayDeque<>();
q.offer(new int[] {0, 0, k});
boolean[][][] vis = new boolean[m][n][k + 1];
vis[0][0][k] = true;
int ans = 0;
int[] dirs = {-1, 0, 1, 0, -1};
while (!q.isEmpty()) {
++ans;
for (int i = q.size(); i > 0; --i) {
int[] p = q.poll();
k = p[2];
for (int j = 0; j < 4; ++j) {
int x = p[0] + dirs[j];
int y = p[1] + dirs[j + 1];
if (x >= 0 && x < m && y >= 0 && y < n) {
if (x == m - 1 && y == n - 1) {
return ans;
}
if (grid[x][y] == 0 && !vis[x][y][k]) {
q.offer(new int[] {x, y, k});
vis[x][y][k] = true;
} else if (grid[x][y] == 1 && k > 0 && !vis[x][y][k - 1]) {
q.offer(new int[] {x, y, k - 1});
vis[x][y][k - 1] = true;
}
}
}
}
}
return -1;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35 | class Solution {
public:
int shortestPath(vector<vector<int>>& grid, int k) {
int m = grid.size(), n = grid[0].size();
if (k >= m + n - 3) return m + n - 2;
queue<vector<int>> q;
q.push({0, 0, k});
vector<vector<vector<bool>>> vis(m, vector<vector<bool>>(n, vector<bool>(k + 1)));
vis[0][0][k] = true;
int ans = 0;
vector<int> dirs = {-1, 0, 1, 0, -1};
while (!q.empty()) {
++ans;
for (int i = q.size(); i > 0; --i) {
auto p = q.front();
k = p[2];
q.pop();
for (int j = 0; j < 4; ++j) {
int x = p[0] + dirs[j], y = p[1] + dirs[j + 1];
if (x >= 0 && x < m && y >= 0 && y < n) {
if (x == m - 1 && y == n - 1) return ans;
if (grid[x][y] == 0 && !vis[x][y][k]) {
q.push({x, y, k});
vis[x][y][k] = true;
} else if (grid[x][y] == 1 && k > 0 && !vis[x][y][k - 1]) {
q.push({x, y, k - 1});
vis[x][y][k - 1] = true;
}
}
}
}
}
return -1;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41 | func shortestPath(grid [][]int, k int) int {
m, n := len(grid), len(grid[0])
if k >= m+n-3 {
return m + n - 2
}
q := [][]int{[]int{0, 0, k}}
vis := make([][][]bool, m)
for i := range vis {
vis[i] = make([][]bool, n)
for j := range vis[i] {
vis[i][j] = make([]bool, k+1)
}
}
vis[0][0][k] = true
dirs := []int{-1, 0, 1, 0, -1}
ans := 0
for len(q) > 0 {
ans++
for i := len(q); i > 0; i-- {
p := q[0]
q = q[1:]
k = p[2]
for j := 0; j < 4; j++ {
x, y := p[0]+dirs[j], p[1]+dirs[j+1]
if x >= 0 && x < m && y >= 0 && y < n {
if x == m-1 && y == n-1 {
return ans
}
if grid[x][y] == 0 && !vis[x][y][k] {
q = append(q, []int{x, y, k})
vis[x][y][k] = true
} else if grid[x][y] == 1 && k > 0 && !vis[x][y][k-1] {
q = append(q, []int{x, y, k - 1})
vis[x][y][k-1] = true
}
}
}
}
}
return -1
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41 | function shortestPath(grid: number[][], k: number): number {
const m = grid.length;
const n = grid[0].length;
if (k >= m + n - 3) {
return m + n - 2;
}
let q: Point[] = [[0, 0, k]];
const vis = Array.from({ length: m }, () =>
Array.from({ length: n }, () => Array.from({ length: k + 1 }, () => false)),
);
vis[0][0][k] = true;
const dirs = [0, 1, 0, -1, 0];
let ans = 0;
while (q.length) {
const nextQ: Point[] = [];
++ans;
for (const [i, j, k] of q) {
for (let d = 0; d < 4; ++d) {
const [x, y] = [i + dirs[d], j + dirs[d + 1]];
if (x === m - 1 && y === n - 1) {
return ans;
}
const v = grid[x]?.[y];
if (v === 0 && !vis[x][y][k]) {
nextQ.push([x, y, k]);
vis[x][y][k] = true;
} else if (v === 1 && k > 0 && !vis[x][y][k - 1]) {
nextQ.push([x, y, k - 1]);
vis[x][y][k - 1] = true;
}
}
}
q = nextQ;
}
return -1;
}
type Point = [number, number, number];
|