
题目描述
给你一个 n x n
整数矩阵 grid
,请你返回 非零偏移下降路径 数字和的最小值。
非零偏移下降路径 定义为:从 grid
数组中的每一行选择一个数字,且按顺序选出来的数字中,相邻数字不在原数组的同一列。
示例 1:

输入:grid = [[1,2,3],[4,5,6],[7,8,9]]
输出:13
解释:
所有非零偏移下降路径包括:
[1,5,9], [1,5,7], [1,6,7], [1,6,8],
[2,4,8], [2,4,9], [2,6,7], [2,6,8],
[3,4,8], [3,4,9], [3,5,7], [3,5,9]
下降路径中数字和最小的是 [1,5,7] ,所以答案是 13 。
示例 2:
输入:grid = [[7]]
输出:7
提示:
n == grid.length == grid[i].length
1 <= n <= 200
-99 <= grid[i][j] <= 99
解法
方法一:动态规划
我们定义 \(f[i][j]\) 表示前 \(i\) 行,且最后一个数字在第 \(j\) 列的最小数字和。那么状态转移方程为:
\[
f[i][j] = \min_{k \neq j} f[i - 1][k] + grid[i - 1][j]
\]
其中 \(k\) 表示第 \(i - 1\) 行的数字在第 \(k\) 列,第 \(i\) 行第 \(j\) 列的数字为 \(grid[i - 1][j]\)。
最后答案为 \(f[n]\) 中的最小值。
时间复杂度 \(O(n^3)\),空间复杂度 \(O(n^2)\)。其中 \(n\) 为矩阵的行数。
我们注意到,状态 \(f[i][j]\) 只与 \(f[i - 1][k]\) 有关,因此我们可以使用滚动数组优化空间复杂度,将空间复杂度优化到 \(O(n)\)。
| class Solution:
def minFallingPathSum(self, grid: List[List[int]]) -> int:
n = len(grid)
f = [0] * n
for row in grid:
g = row[:]
for i in range(n):
g[i] += min((f[j] for j in range(n) if j != i), default=0)
f = g
return min(f)
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | class Solution {
public int minFallingPathSum(int[][] grid) {
int n = grid.length;
int[] f = new int[n];
final int inf = 1 << 30;
for (int[] row : grid) {
int[] g = row.clone();
for (int i = 0; i < n; ++i) {
int t = inf;
for (int j = 0; j < n; ++j) {
if (j != i) {
t = Math.min(t, f[j]);
}
}
g[i] += (t == inf ? 0 : t);
}
f = g;
}
return Arrays.stream(f).min().getAsInt();
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | class Solution {
public:
int minFallingPathSum(vector<vector<int>>& grid) {
int n = grid.size();
vector<int> f(n);
const int inf = 1e9;
for (const auto& row : grid) {
vector<int> g = row;
for (int i = 0; i < n; ++i) {
int t = inf;
for (int j = 0; j < n; ++j) {
if (j != i) {
t = min(t, f[j]);
}
}
g[i] += (t == inf ? 0 : t);
}
f = move(g);
}
return ranges::min(f);
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | func minFallingPathSum(grid [][]int) int {
f := make([]int, len(grid))
const inf = math.MaxInt32
for _, row := range grid {
g := slices.Clone(row)
for i := range f {
t := inf
for j := range row {
if j != i {
t = min(t, f[j])
}
}
if t != inf {
g[i] += t
}
}
f = g
}
return slices.Min(f)
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | function minFallingPathSum(grid: number[][]): number {
const n = grid.length;
const f: number[] = Array(n).fill(0);
for (const row of grid) {
const g = [...row];
for (let i = 0; i < n; ++i) {
let t = Infinity;
for (let j = 0; j < n; ++j) {
if (j !== i) {
t = Math.min(t, f[j]);
}
}
g[i] += t === Infinity ? 0 : t;
}
f.splice(0, n, ...g);
}
return Math.min(...f);
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | impl Solution {
pub fn min_falling_path_sum(grid: Vec<Vec<i32>>) -> i32 {
let n = grid.len();
let mut f = vec![0; n];
let inf = i32::MAX;
for row in grid {
let mut g = row.clone();
for i in 0..n {
let mut t = inf;
for j in 0..n {
if j != i {
t = t.min(f[j]);
}
}
g[i] += if t == inf { 0 } else { t };
}
f = g;
}
*f.iter().min().unwrap()
}
}
|