树
深度优先搜索
动态规划
二叉树
题目描述
二叉树中的 路径 被定义为一条节点序列,序列中每对相邻节点之间都存在一条边。同一个节点在一条路径序列中 至多出现一次 。该路径 至少包含一个 节点,且不一定经过根节点。
路径和 是路径中各节点值的总和。
给你一个二叉树的根节点 root
,返回其 最大路径和 。
示例 1:
输入: root = [1,2,3]
输出: 6
解释: 最优路径是 2 -> 1 -> 3 ,路径和为 2 + 1 + 3 = 6
示例 2:
输入: root = [-10,9,20,null,null,15,7]
输出: 42
解释: 最优路径是 15 -> 20 -> 7 ,路径和为 15 + 20 + 7 = 42
提示:
树中节点数目范围是 [1, 3 * 104 ]
-1000 <= Node.val <= 1000
解法
方法一:递归
我们思考二叉树递归问题的经典套路:
终止条件(何时终止递归)
递归处理左右子树
合并左右子树的计算结果
对于本题,我们设计一个函数 $dfs(root)$,它返回以 $root$ 为根节点的二叉树的最大路径和。
函数 $dfs(root)$ 的执行逻辑如下:
如果 $root$ 不存在,那么 $dfs(root)$ 返回 $0$;
否则,我们递归计算 $root$ 的左子树和右子树的最大路径和,分别记为 $left$ 和 $right$。如果 $left$ 小于 $0$,那么我们将其置为 $0$,同理,如果 $right$ 小于 $0$,那么我们将其置为 $0$。
然后,我们用 $root.val + left + right$ 更新答案。最后,函数返回 $root.val + \max(left, right)$。
在主函数中,我们调用 $dfs(root)$,即可得到每个节点的最大路径和,其中的最大值即为答案。
时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是二叉树的节点数。
Python3 Java C++ Go TypeScript Rust JavaScript C#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution :
def maxPathSum ( self , root : Optional [ TreeNode ]) -> int :
def dfs ( root : Optional [ TreeNode ]) -> int :
if root is None :
return 0
left = max ( 0 , dfs ( root . left ))
right = max ( 0 , dfs ( root . right ))
nonlocal ans
ans = max ( ans , root . val + left + right )
return root . val + max ( left , right )
ans = - inf
dfs ( root )
return ans
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33 /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private int ans = - 1001 ;
public int maxPathSum ( TreeNode root ) {
dfs ( root );
return ans ;
}
private int dfs ( TreeNode root ) {
if ( root == null ) {
return 0 ;
}
int left = Math . max ( 0 , dfs ( root . left ));
int right = Math . max ( 0 , dfs ( root . right ));
ans = Math . max ( ans , root . val + left + right );
return root . val + Math . max ( left , right );
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public :
int maxPathSum ( TreeNode * root ) {
int ans = -1001 ;
function < int ( TreeNode * ) > dfs = [ & ]( TreeNode * root ) {
if ( ! root ) {
return 0 ;
}
int left = max ( 0 , dfs ( root -> left ));
int right = max ( 0 , dfs ( root -> right ));
ans = max ( ans , left + right + root -> val );
return root -> val + max ( left , right );
};
dfs ( root );
return ans ;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 /**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func maxPathSum ( root * TreeNode ) int {
ans := - 1001
var dfs func ( * TreeNode ) int
dfs = func ( root * TreeNode ) int {
if root == nil {
return 0
}
left := max ( 0 , dfs ( root . Left ))
right := max ( 0 , dfs ( root . Right ))
ans = max ( ans , left + right + root . Val )
return max ( left , right ) + root . Val
}
dfs ( root )
return ans
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 /**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function maxPathSum ( root : TreeNode | null ) : number {
let ans = - 1001 ;
const dfs = ( root : TreeNode | null ) : number => {
if ( ! root ) {
return 0 ;
}
const left = Math . max ( 0 , dfs ( root . left ));
const right = Math . max ( 0 , dfs ( root . right ));
ans = Math . max ( ans , left + right + root . val );
return Math . max ( left , right ) + root . val ;
};
dfs ( root );
return ans ;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 // Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std :: cell :: RefCell ;
use std :: rc :: Rc ;
impl Solution {
fn dfs ( root : & Option < Rc < RefCell < TreeNode >>> , res : & mut i32 ) -> i32 {
if root . is_none () {
return 0 ;
}
let node = root . as_ref (). unwrap (). borrow ();
let left = ( 0 ). max ( Self :: dfs ( & node . left , res ));
let right = ( 0 ). max ( Self :: dfs ( & node . right , res ));
* res = ( node . val + left + right ). max ( * res );
node . val + left . max ( right )
}
pub fn max_path_sum ( root : Option < Rc < RefCell < TreeNode >>> ) -> i32 {
let mut res = - 1000 ;
Self :: dfs ( & root , & mut res );
res
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 /**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {number}
*/
var maxPathSum = function ( root ) {
let ans = - 1001 ;
const dfs = root => {
if ( ! root ) {
return 0 ;
}
const left = Math . max ( 0 , dfs ( root . left ));
const right = Math . max ( 0 , dfs ( root . right ));
ans = Math . max ( ans , left + right + root . val );
return Math . max ( left , right ) + root . val ;
};
dfs ( root );
return ans ;
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 /**
* Definition for a binary tree node.
* public class TreeNode {
* public int val;
* public TreeNode left;
* public TreeNode right;
* public TreeNode(int val=0, TreeNode left=null, TreeNode right=null) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
public class Solution {
private int ans = - 1001 ;
public int MaxPathSum ( TreeNode root ) {
dfs ( root );
return ans ;
}
private int dfs ( TreeNode root ) {
if ( root == null ) {
return 0 ;
}
int left = Math . Max ( 0 , dfs ( root . left ));
int right = Math . Max ( 0 , dfs ( root . right ));
ans = Math . Max ( ans , left + right + root . val );
return root . val + Math . Max ( left , right );
}
}