题目描述
给出一个字符串 s
和一个整数 k
,若这个字符串是一个「k 回文 」,则返回 true
。
如果可以通过从字符串中删去最多 k
个字符将其转换为回文,那么这个字符串就是一个「k 回文 」。
示例 1:
输入:s = "abcdeca", k = 2
输出:true
解释:删去字符 “b” 和 “e”。
示例 2:
输入:s = "abbababa", k = 1
输出:true
提示:
1 <= s.length <= 1000
s
中只含有小写英文字母
1 <= k <= s.length
解法
方法一:动态规划
题目要求删去最多 $k$ 个字符,使得剩余的字符串是回文串。可以转换为求最长回文子序列的问题。
我们定义 $f[i][j]$ 表示字符串 $s$ 中下标范围 $[i, j]$ 内的最长回文子序列的长度。初始时 $f[i][i] = 1$,即每个单独的字符都是一个回文子序列。
当 $s[i] = s[j]$ 时,有 $f[i][j] = f[i + 1][j - 1] + 2$,即去掉 $s[i]$ 和 $s[j]$ 后,剩余的字符串的最长回文子序列长度加 $2$。
当 $s[i] \neq s[j]$ 时,有 $f[i][j] = \max(f[i + 1][j], f[i][j - 1])$,即去掉 $s[i]$ 或 $s[j]$ 后,剩余的字符串的最长回文子序列长度。
然后是否存在 $f[i][j] + k \geq n$,如果存在,说明可以通过删去 $k$ 个字符,使得剩余的字符串是回文串。
时间复杂度 $O(n^2)$,空间复杂度 $O(n^2)$。其中 $n$ 为字符串 $s$ 的长度。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | class Solution:
def isValidPalindrome(self, s: str, k: int) -> bool:
n = len(s)
f = [[0] * n for _ in range(n)]
for i in range(n):
f[i][i] = 1
for i in range(n - 2, -1, -1):
for j in range(i + 1, n):
if s[i] == s[j]:
f[i][j] = f[i + 1][j - 1] + 2
else:
f[i][j] = max(f[i + 1][j], f[i][j - 1])
if f[i][j] + k >= n:
return True
return False
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | class Solution {
public boolean isValidPalindrome(String s, int k) {
int n = s.length();
int[][] f = new int[n][n];
for (int i = 0; i < n; ++i) {
f[i][i] = 1;
}
for (int i = n - 2; i >= 0; --i) {
for (int j = i + 1; j < n; ++j) {
if (s.charAt(i) == s.charAt(j)) {
f[i][j] = f[i + 1][j - 1] + 2;
} else {
f[i][j] = Math.max(f[i + 1][j], f[i][j - 1]);
}
if (f[i][j] + k >= n) {
return true;
}
}
}
return false;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | class Solution {
public:
bool isValidPalindrome(string s, int k) {
int n = s.length();
int f[n][n];
memset(f, 0, sizeof f);
for (int i = 0; i < n; ++i) {
f[i][i] = 1;
}
for (int i = n - 2; i >= 0; --i) {
for (int j = i + 1; j < n; ++j) {
if (s[i] == s[j]) {
f[i][j] = f[i + 1][j - 1] + 2;
} else {
f[i][j] = max(f[i + 1][j], f[i][j - 1]);
}
if (f[i][j] + k >= n) {
return true;
}
}
}
return false;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | func isValidPalindrome(s string, k int) bool {
n := len(s)
f := make([][]int, n)
for i := range f {
f[i] = make([]int, n)
f[i][i] = 1
}
for i := n - 2; i >= 0; i-- {
for j := i + 1; j < n; j++ {
if s[i] == s[j] {
f[i][j] = f[i+1][j-1] + 2
} else {
f[i][j] = max(f[i+1][j], f[i][j-1])
}
if f[i][j]+k >= n {
return true
}
}
}
return false
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | function isValidPalindrome(s: string, k: number): boolean {
const n = s.length;
const f: number[][] = Array.from({ length: n }, () => Array.from({ length: n }, () => 0));
for (let i = 0; i < n; ++i) {
f[i][i] = 1;
}
for (let i = n - 2; ~i; --i) {
for (let j = i + 1; j < n; ++j) {
if (s[i] === s[j]) {
f[i][j] = f[i + 1][j - 1] + 2;
} else {
f[i][j] = Math.max(f[i + 1][j], f[i][j - 1]);
}
if (f[i][j] + k >= n) {
return true;
}
}
}
return false;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 | impl Solution {
pub fn is_valid_palindrome(s: String, k: i32) -> bool {
let s = s.as_bytes();
let n = s.len();
let mut f = vec![vec![0; n]; n];
for i in 0..n {
f[i][i] = 1;
}
for i in (0..n - 2).rev() {
for j in i + 1..n {
if s[i] == s[j] {
f[i][j] = f[i + 1][j - 1] + 2;
} else {
f[i][j] = std::cmp::max(f[i + 1][j], f[i][j - 1]);
}
if f[i][j] + k >= (n as i32) {
return true;
}
}
}
false
}
}
|