跳转至

1197. 进击的骑士 🔒

题目描述

一个坐标可以从 -infinity 延伸到 +infinity 的 无限大的 棋盘上,你的 骑士 驻扎在坐标为 [0, 0] 的方格里。

骑士的走法和中国象棋中的马相似,走 “日” 字:即先向左(或右)走 1 格,再向上(或下)走 2 格;或先向左(或右)走 2 格,再向上(或下)走 1 格。

每次移动,他都可以按图示八个方向之一前进。

返回 骑士前去征服坐标为 [x, y] 的部落所需的最小移动次数 。本题确保答案是一定存在的。

 

示例 1:

输入:x = 2, y = 1
输出:1
解释:[0, 0] → [2, 1]

示例 2:

输入:x = 5, y = 5
输出:4
解释:[0, 0] → [2, 1] → [4, 2] → [3, 4] → [5, 5]

 

提示:

  • -300 <= x, y <= 300
  • 0 <= |x| + |y| <= 300

解法

方法一:BFS

BFS 最短路模型。本题搜索空间不大,可以直接使用朴素 BFS,以下题解中还提供了双向 BFS 的题解代码,仅供参考。

双向 BFS 是 BFS 常见的一个优化方法,主要实现思路如下:

  1. 创建两个队列 q1, q2 分别用于“起点 -> 终点”、“终点 -> 起点”两个方向的搜索;
  2. 创建两个哈希表 m1, m2 分别记录访问过的节点以及对应的扩展次数(步数);
  3. 每次搜索时,优先选择元素数量较少的队列进行搜索扩展,如果在扩展过程中,搜索到另一个方向已经访问过的节点,说明找到了最短路径;
  4. 只要其中一个队列为空,说明当前方向的搜索已经进行不下去了,说明起点到终点不连通,无需继续搜索。
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
class Solution:
    def minKnightMoves(self, x: int, y: int) -> int:
        q = deque([(0, 0)])
        ans = 0
        vis = {(0, 0)}
        dirs = ((-2, 1), (-1, 2), (1, 2), (2, 1), (2, -1), (1, -2), (-1, -2), (-2, -1))
        while q:
            for _ in range(len(q)):
                i, j = q.popleft()
                if (i, j) == (x, y):
                    return ans
                for a, b in dirs:
                    c, d = i + a, j + b
                    if (c, d) not in vis:
                        vis.add((c, d))
                        q.append((c, d))
            ans += 1
        return -1
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
class Solution {
    public int minKnightMoves(int x, int y) {
        x += 310;
        y += 310;
        int ans = 0;
        Queue<int[]> q = new ArrayDeque<>();
        q.offer(new int[] {310, 310});
        boolean[][] vis = new boolean[700][700];
        vis[310][310] = true;
        int[][] dirs = {{-2, 1}, {-1, 2}, {1, 2}, {2, 1}, {2, -1}, {1, -2}, {-1, -2}, {-2, -1}};
        while (!q.isEmpty()) {
            for (int k = q.size(); k > 0; --k) {
                int[] p = q.poll();
                if (p[0] == x && p[1] == y) {
                    return ans;
                }
                for (int[] dir : dirs) {
                    int c = p[0] + dir[0];
                    int d = p[1] + dir[1];
                    if (!vis[c][d]) {
                        vis[c][d] = true;
                        q.offer(new int[] {c, d});
                    }
                }
            }
            ++ans;
        }
        return -1;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
class Solution {
public:
    int minKnightMoves(int x, int y) {
        x += 310;
        y += 310;
        int ans = 0;
        queue<pair<int, int>> q;
        q.push({310, 310});
        vector<vector<bool>> vis(700, vector<bool>(700));
        vis[310][310] = true;
        vector<vector<int>> dirs = {{-2, 1}, {-1, 2}, {1, 2}, {2, 1}, {2, -1}, {1, -2}, {-1, -2}, {-2, -1}};
        while (!q.empty()) {
            for (int k = q.size(); k > 0; --k) {
                auto p = q.front();
                q.pop();
                if (p.first == x && p.second == y) return ans;
                for (auto& dir : dirs) {
                    int c = p.first + dir[0], d = p.second + dir[1];
                    if (!vis[c][d]) {
                        vis[c][d] = true;
                        q.push({c, d});
                    }
                }
            }
            ++ans;
        }
        return -1;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
func minKnightMoves(x int, y int) int {
    x, y = x+310, y+310
    ans := 0
    q := [][]int{{310, 310}}
    vis := make([][]bool, 700)
    for i := range vis {
        vis[i] = make([]bool, 700)
    }
    dirs := [][]int{{-2, 1}, {-1, 2}, {1, 2}, {2, 1}, {2, -1}, {1, -2}, {-1, -2}, {-2, -1}}
    for len(q) > 0 {
        for k := len(q); k > 0; k-- {
            p := q[0]
            q = q[1:]
            if p[0] == x && p[1] == y {
                return ans
            }
            for _, dir := range dirs {
                c, d := p[0]+dir[0], p[1]+dir[1]
                if !vis[c][d] {
                    vis[c][d] = true
                    q = append(q, []int{c, d})
                }
            }
        }
        ans++
    }
    return -1
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
use std::collections::VecDeque;

const DIR: [(i32, i32); 8] = [
    (-2, 1),
    (2, 1),
    (-1, 2),
    (1, 2),
    (2, -1),
    (-2, -1),
    (1, -2),
    (-1, -2),
];

impl Solution {
    #[allow(dead_code)]
    pub fn min_knight_moves(x: i32, y: i32) -> i32 {
        // The original x, y are from [-300, 300]
        // Let's shift them to [0, 600]
        let x: i32 = x + 300;
        let y: i32 = y + 300;
        let mut ret = -1;
        let mut vis: Vec<Vec<bool>> = vec![vec![false; 618]; 618];
        // <X, Y, Current Steps>
        let mut q: VecDeque<(i32, i32, i32)> = VecDeque::new();

        q.push_back((300, 300, 0));

        while !q.is_empty() {
            let (i, j, s) = q.front().unwrap().clone();
            q.pop_front();
            if i == x && j == y {
                ret = s;
                break;
            }
            Self::enqueue(&mut vis, &mut q, i, j, s);
        }

        ret
    }

    #[allow(dead_code)]
    fn enqueue(
        vis: &mut Vec<Vec<bool>>,
        q: &mut VecDeque<(i32, i32, i32)>,
        i: i32,
        j: i32,
        cur_step: i32,
    ) {
        let next_step = cur_step + 1;
        for (dx, dy) in DIR {
            let x = i + dx;
            let y = j + dy;
            if Self::check_bounds(x, y) || vis[x as usize][y as usize] {
                // This <X, Y> pair is either out of bound, or has been visited before
                // Just ignore this pair
                continue;
            }
            // Otherwise, add the pair to the queue
            // Also remember to update the vis vector
            vis[x as usize][y as usize] = true;
            q.push_back((x, y, next_step));
        }
    }

    #[allow(dead_code)]
    fn check_bounds(i: i32, j: i32) -> bool {
        i < 0 || i > 600 || j < 0 || j > 600
    }
}

方法二

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
class Solution:
    def minKnightMoves(self, x: int, y: int) -> int:
        def extend(m1, m2, q):
            for _ in range(len(q)):
                i, j = q.popleft()
                step = m1[(i, j)]
                for a, b in (
                    (-2, 1),
                    (-1, 2),
                    (1, 2),
                    (2, 1),
                    (2, -1),
                    (1, -2),
                    (-1, -2),
                    (-2, -1),
                ):
                    x, y = i + a, j + b
                    if (x, y) in m1:
                        continue
                    if (x, y) in m2:
                        return step + 1 + m2[(x, y)]
                    q.append((x, y))
                    m1[(x, y)] = step + 1
            return -1

        if (x, y) == (0, 0):
            return 0
        q1, q2 = deque([(0, 0)]), deque([(x, y)])
        m1, m2 = {(0, 0): 0}, {(x, y): 0}
        while q1 and q2:
            t = extend(m1, m2, q1) if len(q1) <= len(q2) else extend(m2, m1, q2)
            if t != -1:
                return t
        return -1
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
class Solution {
    private int n = 700;

    public int minKnightMoves(int x, int y) {
        if (x == 0 && y == 0) {
            return 0;
        }
        x += 310;
        y += 310;
        Map<Integer, Integer> m1 = new HashMap<>();
        Map<Integer, Integer> m2 = new HashMap<>();
        m1.put(310 * n + 310, 0);
        m2.put(x * n + y, 0);
        Queue<int[]> q1 = new ArrayDeque<>();
        Queue<int[]> q2 = new ArrayDeque<>();
        q1.offer(new int[] {310, 310});
        q2.offer(new int[] {x, y});
        while (!q1.isEmpty() && !q2.isEmpty()) {
            int t = q1.size() <= q2.size() ? extend(m1, m2, q1) : extend(m2, m1, q2);
            if (t != -1) {
                return t;
            }
        }
        return -1;
    }

    private int extend(Map<Integer, Integer> m1, Map<Integer, Integer> m2, Queue<int[]> q) {
        int[][] dirs = {{-2, 1}, {-1, 2}, {1, 2}, {2, 1}, {2, -1}, {1, -2}, {-1, -2}, {-2, -1}};
        for (int k = q.size(); k > 0; --k) {
            int[] p = q.poll();
            int step = m1.get(p[0] * n + p[1]);
            for (int[] dir : dirs) {
                int x = p[0] + dir[0];
                int y = p[1] + dir[1];
                if (m1.containsKey(x * n + y)) {
                    continue;
                }
                if (m2.containsKey(x * n + y)) {
                    return step + 1 + m2.get(x * n + y);
                }
                m1.put(x * n + y, step + 1);
                q.offer(new int[] {x, y});
            }
        }
        return -1;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
typedef pair<int, int> PII;

class Solution {
public:
    int n = 700;

    int minKnightMoves(int x, int y) {
        if (x == 0 && y == 0) return 0;
        x += 310;
        y += 310;
        unordered_map<int, int> m1;
        unordered_map<int, int> m2;
        m1[310 * n + 310] = 0;
        m2[x * n + y] = 0;
        queue<PII> q1;
        queue<PII> q2;
        q1.push({310, 310});
        q2.push({x, y});
        while (!q1.empty() && !q2.empty()) {
            int t = q1.size() <= q2.size() ? extend(m1, m2, q1) : extend(m2, m1, q2);
            if (t != -1) return t;
        }
        return -1;
    }

    int extend(unordered_map<int, int>& m1, unordered_map<int, int>& m2, queue<PII>& q) {
        vector<vector<int>> dirs = {{-2, 1}, {-1, 2}, {1, 2}, {2, 1}, {2, -1}, {1, -2}, {-1, -2}, {-2, -1}};
        for (int k = q.size(); k > 0; --k) {
            auto p = q.front();
            q.pop();
            int i = p.first, j = p.second;
            int step = m1[i * n + j];
            for (auto& dir : dirs) {
                int x = i + dir[0], y = j + dir[1];
                if (m1.count(x * n + y)) continue;
                if (m2.count(x * n + y)) return step + 1 + m2[x * n + y];
                m1[x * n + y] = step + 1;
                q.push({x, y});
            }
        }
        return -1;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
func minKnightMoves(x int, y int) int {
    if x == 0 && y == 0 {
        return 0
    }
    n := 700
    x, y = x+310, y+310
    q1, q2 := []int{310*700 + 310}, []int{x*n + y}
    m1, m2 := map[int]int{310*700 + 310: 0}, map[int]int{x*n + y: 0}
    dirs := [][]int{{-2, 1}, {-1, 2}, {1, 2}, {2, 1}, {2, -1}, {1, -2}, {-1, -2}, {-2, -1}}
    extend := func() int {
        for k := len(q1); k > 0; k-- {
            p := q1[0]
            q1 = q1[1:]
            i, j := p/n, p%n
            step := m1[i*n+j]
            for _, dir := range dirs {
                x, y := i+dir[0], j+dir[1]
                t := x*n + y
                if _, ok := m1[t]; ok {
                    continue
                }
                if v, ok := m2[t]; ok {
                    return step + 1 + v
                }
                m1[t] = step + 1
                q1 = append(q1, t)
            }
        }
        return -1
    }
    for len(q1) > 0 && len(q2) > 0 {
        if len(q1) <= len(q2) {
            q1, q2 = q2, q1
            m1, m2 = m2, m1
        }
        t := extend()
        if t != -1 {
            return t
        }
    }
    return -1
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
use std::collections::HashMap;
use std::collections::VecDeque;

const DIR: [(i32, i32); 8] = [
    (-2, 1),
    (2, 1),
    (-1, 2),
    (1, 2),
    (2, -1),
    (-2, -1),
    (1, -2),
    (-1, -2),
];

impl Solution {
    #[allow(dead_code)]
    pub fn min_knight_moves(x: i32, y: i32) -> i32 {
        if x == 0 && y == 0 {
            return 0;
        }
        // Otherwise, let's shift <X, Y> from [-300, 300] -> [0, 600]
        let x = x + 300;
        let y = y + 300;
        let mut ret = -1;
        // Initialize the two hash map, used to track if a node has been visited
        let mut map_to: HashMap<i32, i32> = HashMap::new();
        let mut map_from: HashMap<i32, i32> = HashMap::new();
        // Input the original status
        map_to.insert(601 * 300 + 300, 0);
        map_from.insert(601 * x + y, 0);
        let mut q_to: VecDeque<(i32, i32)> = VecDeque::new();
        let mut q_from: VecDeque<(i32, i32)> = VecDeque::new();
        // Initialize the two queue
        q_to.push_back((300, 300));
        q_from.push_back((x, y));

        while !q_to.is_empty() && !q_from.is_empty() {
            let step = if q_to.len() < q_from.len() {
                Self::extend(&mut map_to, &mut map_from, &mut q_to)
            } else {
                Self::extend(&mut map_from, &mut map_to, &mut q_from)
            };
            if step != -1 {
                ret = step;
                break;
            }
        }

        ret
    }

    #[allow(dead_code)]
    fn extend(
        map_to: &mut HashMap<i32, i32>,
        map_from: &mut HashMap<i32, i32>,
        cur_q: &mut VecDeque<(i32, i32)>,
    ) -> i32 {
        let n = cur_q.len();
        for _ in 0..n {
            let (i, j) = cur_q.front().unwrap().clone();
            cur_q.pop_front();
            // The cur_step here must exist
            let cur_step = map_to.get(&(601 * i + j)).unwrap().clone();
            for (dx, dy) in DIR {
                let x = i + dx;
                let y = j + dy;
                // Check if this node has been visited
                if map_to.contains_key(&(601 * x + y)) {
                    // Just ignore this node
                    continue;
                }
                // Check if this node has been visited by the other side
                if map_from.contains_key(&(601 * x + y)) {
                    // We found the node
                    return (cur_step + 1 + map_from.get(&(601 * x + y)).unwrap().clone());
                }
                // Otherwise, update map_to and push the new node to queue
                map_to.insert(601 * x + y, cur_step + 1);
                cur_q.push_back((x, y));
            }
        }
        -1
    }
}

评论