跳转至

1172. 餐盘栈

题目描述

我们把无限数量 ∞ 的栈排成一行,按从左到右的次序从 0 开始编号。每个栈的的最大容量 capacity 都相同。

实现一个叫「餐盘」的类 DinnerPlates

  • DinnerPlates(int capacity) - 给出栈的最大容量 capacity
  • void push(int val) - 将给出的正整数 val 推入 从左往右第一个 没有满的栈。
  • int pop() - 返回 从右往左第一个 非空栈顶部的值,并将其从栈中删除;如果所有的栈都是空的,请返回 -1
  • int popAtStack(int index) - 返回编号 index 的栈顶部的值,并将其从栈中删除;如果编号 index 的栈是空的,请返回 -1

 

示例:

输入: 
["DinnerPlates","push","push","push","push","push","popAtStack","push","push","popAtStack","popAtStack","pop","pop","pop","pop","pop"]
[[2],[1],[2],[3],[4],[5],[0],[20],[21],[0],[2],[],[],[],[],[]]
输出:
[null,null,null,null,null,null,2,null,null,20,21,5,4,3,1,-1]

解释:
DinnerPlates D = DinnerPlates(2);  // 初始化,栈最大容量 capacity = 2
D.push(1);
D.push(2);
D.push(3);
D.push(4);
D.push(5);         // 栈的现状为:    2  4
                                    1  3  5
                                    ﹈ ﹈ ﹈
D.popAtStack(0);   // 返回 2。栈的现状为:      4
                                          1  3  5
                                          ﹈ ﹈ ﹈
D.push(20);        // 栈的现状为:  20  4
                                   1  3  5
                                   ﹈ ﹈ ﹈
D.push(21);        // 栈的现状为:  20  4 21
                                   1  3  5
                                   ﹈ ﹈ ﹈
D.popAtStack(0);   // 返回 20。栈的现状为:       4 21
                                            1  3  5
                                            ﹈ ﹈ ﹈
D.popAtStack(2);   // 返回 21。栈的现状为:       4
                                            1  3  5
                                            ﹈ ﹈ ﹈ 
D.pop()            // 返回 5。栈的现状为:        4
                                            1  3 
                                            ﹈ ﹈  
D.pop()            // 返回 4。栈的现状为:    1  3 
                                           ﹈ ﹈   
D.pop()            // 返回 3。栈的现状为:    1 
                                           ﹈   
D.pop()            // 返回 1。现在没有栈。
D.pop()            // 返回 -1。仍然没有栈。

 

提示:

  • 1 <= capacity <= 20000
  • 1 <= val <= 20000
  • 0 <= index <= 100000
  • 最多会对 pushpop,和 popAtStack 进行 200000 次调用。

解法

方法一:栈数组 + 有序集合

我们定义以下数据结构或变量:

  • capacity:每个栈的容量;
  • stacks:栈数组,用于存储所有的栈,其中每个栈的最大容量都是 capacity
  • not_full:有序集合,用于存储所有未满的栈在栈数组中的下标。

对于 push(val) 操作:

  • 我们首先判断 not_full 是否为空,如果为空,则说明没有未满的栈,需要新建一个栈,然后将 val 压入该栈中,此时判断容量 capacity 是否大于 $1$,如果大于 $1$,则将该栈的下标加入 not_full 中。
  • 如果 not_full 不为空,则说明有未满的栈,我们取出 not_full 中最小的下标 index,将 val 压入 stacks[index] 中,此时如果 stacks[index] 的容量等于 capacity,则将 indexnot_full 中删除。

对于 popAtStack(index) 操作:

  • 我们首先判断 index 是否在 stacks 的下标范围内,如果不在,则直接返回 $-1$。如果 stacks[index] 为空,同样直接返回 $-1$。
  • 如果 stacks[index] 不为空,则弹出 stacks[index] 的栈顶元素 val。如果 index 等于 stacks 的长度减 $1$,则说明 stacks[index] 是最后一个栈,如果为空,我们循环将最后一个栈的下标从 not_full 中移出,并且在栈数组 stacks 中移除最后一个栈,直到最后一个栈不为空、或者栈数组 stacks 为空为止。否则,如果 stacks[index] 不是最后一个栈,我们将 index 加入 not_full 中。
  • 最后返回 val

对于 pop() 操作:

  • 我们直接调用 popAtStack(stacks.length - 1) 即可。

时间复杂度 $(n \times \log n)$,空间复杂度 $O(n)$。其中 $n$ 为操作次数。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from sortedcontainers import SortedSet


class DinnerPlates:
    def __init__(self, capacity: int):
        self.capacity = capacity
        self.stacks = []
        self.not_full = SortedSet()

    def push(self, val: int) -> None:
        if not self.not_full:
            self.stacks.append([val])
            if self.capacity > 1:
                self.not_full.add(len(self.stacks) - 1)
        else:
            index = self.not_full[0]
            self.stacks[index].append(val)
            if len(self.stacks[index]) == self.capacity:
                self.not_full.discard(index)

    def pop(self) -> int:
        return self.popAtStack(len(self.stacks) - 1)

    def popAtStack(self, index: int) -> int:
        if index < 0 or index >= len(self.stacks) or not self.stacks[index]:
            return -1
        val = self.stacks[index].pop()
        if index == len(self.stacks) - 1 and not self.stacks[-1]:
            while self.stacks and not self.stacks[-1]:
                self.not_full.discard(len(self.stacks) - 1)
                self.stacks.pop()
        else:
            self.not_full.add(index)
        return val


# Your DinnerPlates object will be instantiated and called as such:
# obj = DinnerPlates(capacity)
# obj.push(val)
# param_2 = obj.pop()
# param_3 = obj.popAtStack(index)
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
class DinnerPlates {
    private int capacity;
    private List<Deque<Integer>> stacks = new ArrayList<>();
    private TreeSet<Integer> notFull = new TreeSet<>();

    public DinnerPlates(int capacity) {
        this.capacity = capacity;
    }

    public void push(int val) {
        if (notFull.isEmpty()) {
            stacks.add(new ArrayDeque<>());
            stacks.get(stacks.size() - 1).push(val);
            if (capacity > 1) {
                notFull.add(stacks.size() - 1);
            }
        } else {
            int index = notFull.first();
            stacks.get(index).push(val);
            if (stacks.get(index).size() == capacity) {
                notFull.pollFirst();
            }
        }
    }

    public int pop() {
        return popAtStack(stacks.size() - 1);
    }

    public int popAtStack(int index) {
        if (index < 0 || index >= stacks.size() || stacks.get(index).isEmpty()) {
            return -1;
        }
        int val = stacks.get(index).pop();
        if (index == stacks.size() - 1 && stacks.get(stacks.size() - 1).isEmpty()) {
            while (!stacks.isEmpty() && stacks.get(stacks.size() - 1).isEmpty()) {
                notFull.remove(stacks.size() - 1);
                stacks.remove(stacks.size() - 1);
            }
        } else {
            notFull.add(index);
        }
        return val;
    }
}

/**
 * Your DinnerPlates object will be instantiated and called as such:
 * DinnerPlates obj = new DinnerPlates(capacity);
 * obj.push(val);
 * int param_2 = obj.pop();
 * int param_3 = obj.popAtStack(index);
 */
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
class DinnerPlates {
public:
    DinnerPlates(int capacity) {
        this->capacity = capacity;
    }

    void push(int val) {
        if (notFull.empty()) {
            stacks.emplace_back(stack<int>());
            stacks.back().push(val);
            if (capacity > 1) {
                notFull.insert(stacks.size() - 1);
            }
        } else {
            int index = *notFull.begin();
            stacks[index].push(val);
            if (stacks[index].size() == capacity) {
                notFull.erase(index);
            }
        }
    }

    int pop() {
        return popAtStack(stacks.size() - 1);
    }

    int popAtStack(int index) {
        if (index < 0 || index >= stacks.size() || stacks[index].empty()) {
            return -1;
        }
        int val = stacks[index].top();
        stacks[index].pop();
        if (index == stacks.size() - 1 && stacks[index].empty()) {
            while (!stacks.empty() && stacks.back().empty()) {
                notFull.erase(stacks.size() - 1);
                stacks.pop_back();
            }
        } else {
            notFull.insert(index);
        }
        return val;
    }

private:
    int capacity;
    vector<stack<int>> stacks;
    set<int> notFull;
};

/**
 * Your DinnerPlates object will be instantiated and called as such:
 * DinnerPlates* obj = new DinnerPlates(capacity);
 * obj->push(val);
 * int param_2 = obj->pop();
 * int param_3 = obj->popAtStack(index);
 */
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
type DinnerPlates struct {
    capacity int
    stacks   [][]int
    notFull  *redblacktree.Tree
}

func Constructor(capacity int) DinnerPlates {
    return DinnerPlates{capacity: capacity, notFull: redblacktree.NewWithIntComparator()}
}

func (this *DinnerPlates) Push(val int) {
    if this.notFull.Size() == 0 {
        this.stacks = append(this.stacks, []int{val})
        if this.capacity > 1 {
            this.notFull.Put(len(this.stacks)-1, nil)
        }
    } else {
        index, _ := this.notFull.Left().Key.(int)
        this.stacks[index] = append(this.stacks[index], val)
        if len(this.stacks[index]) == this.capacity {
            this.notFull.Remove(index)
        }
    }
}

func (this *DinnerPlates) Pop() int {
    return this.PopAtStack(len(this.stacks) - 1)
}

func (this *DinnerPlates) PopAtStack(index int) int {
    if index < 0 || index >= len(this.stacks) || len(this.stacks[index]) == 0 {
        return -1
    }
    val := this.stacks[index][len(this.stacks[index])-1]
    this.stacks[index] = this.stacks[index][:len(this.stacks[index])-1]
    if index == len(this.stacks)-1 && len(this.stacks[index]) == 0 {
        for len(this.stacks) > 0 && len(this.stacks[len(this.stacks)-1]) == 0 {
            this.notFull.Remove(len(this.stacks) - 1)
            this.stacks = this.stacks[:len(this.stacks)-1]
        }
    } else {
        this.notFull.Put(index, nil)
    }
    return val
}

/**
 * Your DinnerPlates object will be instantiated and called as such:
 * obj := Constructor(capacity);
 * obj.Push(val);
 * param_2 := obj.Pop();
 * param_3 := obj.PopAtStack(index);
 */
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
class DinnerPlates {
    capacity: number;
    stacks: number[][];
    notFull: TreeSet<number>;

    constructor(capacity: number) {
        this.capacity = capacity;
        this.stacks = [];
        this.notFull = new TreeSet<number>();
    }

    push(val: number): void {
        if (this.notFull.size() === 0) {
            this.stacks.push([val]);
            if (this.capacity > 1) {
                this.notFull.add(this.stacks.length - 1);
            }
        } else {
            const index = this.notFull.first()!;
            this.stacks[index].push(val);
            if (this.stacks[index].length === this.capacity) {
                this.notFull.delete(index);
            }
        }
    }

    pop(): number {
        return this.popAtStack(this.stacks.length - 1);
    }

    popAtStack(index: number): number {
        if (index < 0 || index >= this.stacks.length || this.stacks[index].length === 0) {
            return -1;
        }
        const val = this.stacks[index].pop()!;
        if (index === this.stacks.length - 1 && this.stacks[index].length === 0) {
            while (this.stacks.length > 0 && this.stacks[this.stacks.length - 1].length === 0) {
                this.notFull.delete(this.stacks.length - 1);
                this.stacks.pop();
            }
        } else {
            this.notFull.add(index);
        }
        return val;
    }
}

type Compare<T> = (lhs: T, rhs: T) => number;

class RBTreeNode<T = number> {
    data: T;
    count: number;
    left: RBTreeNode<T> | null;
    right: RBTreeNode<T> | null;
    parent: RBTreeNode<T> | null;
    color: number;
    constructor(data: T) {
        this.data = data;
        this.left = this.right = this.parent = null;
        this.color = 0;
        this.count = 1;
    }

    sibling(): RBTreeNode<T> | null {
        if (!this.parent) return null; // sibling null if no parent
        return this.isOnLeft() ? this.parent.right : this.parent.left;
    }

    isOnLeft(): boolean {
        return this === this.parent!.left;
    }

    hasRedChild(): boolean {
        return (
            Boolean(this.left && this.left.color === 0) ||
            Boolean(this.right && this.right.color === 0)
        );
    }
}

class RBTree<T> {
    root: RBTreeNode<T> | null;
    lt: (l: T, r: T) => boolean;
    constructor(compare: Compare<T> = (l: T, r: T) => (l < r ? -1 : l > r ? 1 : 0)) {
        this.root = null;
        this.lt = (l: T, r: T) => compare(l, r) < 0;
    }

    rotateLeft(pt: RBTreeNode<T>): void {
        const right = pt.right!;
        pt.right = right.left;

        if (pt.right) pt.right.parent = pt;
        right.parent = pt.parent;

        if (!pt.parent) this.root = right;
        else if (pt === pt.parent.left) pt.parent.left = right;
        else pt.parent.right = right;

        right.left = pt;
        pt.parent = right;
    }

    rotateRight(pt: RBTreeNode<T>): void {
        const left = pt.left!;
        pt.left = left.right;

        if (pt.left) pt.left.parent = pt;
        left.parent = pt.parent;

        if (!pt.parent) this.root = left;
        else if (pt === pt.parent.left) pt.parent.left = left;
        else pt.parent.right = left;

        left.right = pt;
        pt.parent = left;
    }

    swapColor(p1: RBTreeNode<T>, p2: RBTreeNode<T>): void {
        const tmp = p1.color;
        p1.color = p2.color;
        p2.color = tmp;
    }

    swapData(p1: RBTreeNode<T>, p2: RBTreeNode<T>): void {
        const tmp = p1.data;
        p1.data = p2.data;
        p2.data = tmp;
    }

    fixAfterInsert(pt: RBTreeNode<T>): void {
        let parent = null;
        let grandParent = null;

        while (pt !== this.root && pt.color !== 1 && pt.parent?.color === 0) {
            parent = pt.parent;
            grandParent = pt.parent.parent;

            /*  Case : A
                Parent of pt is left child of Grand-parent of pt */
            if (parent === grandParent?.left) {
                const uncle = grandParent.right;

                /* Case : 1
                   The uncle of pt is also red
                   Only Recoloring required */
                if (uncle && uncle.color === 0) {
                    grandParent.color = 0;
                    parent.color = 1;
                    uncle.color = 1;
                    pt = grandParent;
                } else {
                    /* Case : 2
                       pt is right child of its parent
                       Left-rotation required */
                    if (pt === parent.right) {
                        this.rotateLeft(parent);
                        pt = parent;
                        parent = pt.parent;
                    }

                    /* Case : 3
                       pt is left child of its parent
                       Right-rotation required */
                    this.rotateRight(grandParent);
                    this.swapColor(parent!, grandParent);
                    pt = parent!;
                }
            } else {
                /* Case : B
               Parent of pt is right child of Grand-parent of pt */
                const uncle = grandParent!.left;

                /*  Case : 1
                    The uncle of pt is also red
                    Only Recoloring required */
                if (uncle != null && uncle.color === 0) {
                    grandParent!.color = 0;
                    parent.color = 1;
                    uncle.color = 1;
                    pt = grandParent!;
                } else {
                    /* Case : 2
                       pt is left child of its parent
                       Right-rotation required */
                    if (pt === parent.left) {
                        this.rotateRight(parent);
                        pt = parent;
                        parent = pt.parent;
                    }

                    /* Case : 3
                       pt is right child of its parent
                       Left-rotation required */
                    this.rotateLeft(grandParent!);
                    this.swapColor(parent!, grandParent!);
                    pt = parent!;
                }
            }
        }
        this.root!.color = 1;
    }

    delete(val: T): boolean {
        const node = this.find(val);
        if (!node) return false;
        node.count--;
        if (!node.count) this.deleteNode(node);
        return true;
    }

    deleteAll(val: T): boolean {
        const node = this.find(val);
        if (!node) return false;
        this.deleteNode(node);
        return true;
    }

    deleteNode(v: RBTreeNode<T>): void {
        const u = BSTreplace(v);

        // True when u and v are both black
        const uvBlack = (u === null || u.color === 1) && v.color === 1;
        const parent = v.parent!;

        if (!u) {
            // u is null therefore v is leaf
            if (v === this.root) this.root = null;
            // v is root, making root null
            else {
                if (uvBlack) {
                    // u and v both black
                    // v is leaf, fix double black at v
                    this.fixDoubleBlack(v);
                } else {
                    // u or v is red
                    if (v.sibling()) {
                        // sibling is not null, make it red"
                        v.sibling()!.color = 0;
                    }
                }
                // delete v from the tree
                if (v.isOnLeft()) parent.left = null;
                else parent.right = null;
            }
            return;
        }

        if (!v.left || !v.right) {
            // v has 1 child
            if (v === this.root) {
                // v is root, assign the value of u to v, and delete u
                v.data = u.data;
                v.left = v.right = null;
            } else {
                // Detach v from tree and move u up
                if (v.isOnLeft()) parent.left = u;
                else parent.right = u;
                u.parent = parent;
                if (uvBlack) this.fixDoubleBlack(u);
                // u and v both black, fix double black at u
                else u.color = 1; // u or v red, color u black
            }
            return;
        }

        // v has 2 children, swap data with successor and recurse
        this.swapData(u, v);
        this.deleteNode(u);

        // find node that replaces a deleted node in BST
        function BSTreplace(x: RBTreeNode<T>): RBTreeNode<T> | null {
            // when node have 2 children
            if (x.left && x.right) return successor(x.right);
            // when leaf
            if (!x.left && !x.right) return null;
            // when single child
            return x.left ?? x.right;
        }
        // find node that do not have a left child
        // in the subtree of the given node
        function successor(x: RBTreeNode<T>): RBTreeNode<T> {
            let temp = x;
            while (temp.left) temp = temp.left;
            return temp;
        }
    }

    fixDoubleBlack(x: RBTreeNode<T>): void {
        if (x === this.root) return; // Reached root

        const sibling = x.sibling();
        const parent = x.parent!;
        if (!sibling) {
            // No sibiling, double black pushed up
            this.fixDoubleBlack(parent);
        } else {
            if (sibling.color === 0) {
                // Sibling red
                parent.color = 0;
                sibling.color = 1;
                if (sibling.isOnLeft()) this.rotateRight(parent);
                // left case
                else this.rotateLeft(parent); // right case
                this.fixDoubleBlack(x);
            } else {
                // Sibling black
                if (sibling.hasRedChild()) {
                    // at least 1 red children
                    if (sibling.left && sibling.left.color === 0) {
                        if (sibling.isOnLeft()) {
                            // left left
                            sibling.left.color = sibling.color;
                            sibling.color = parent.color;
                            this.rotateRight(parent);
                        } else {
                            // right left
                            sibling.left.color = parent.color;
                            this.rotateRight(sibling);
                            this.rotateLeft(parent);
                        }
                    } else {
                        if (sibling.isOnLeft()) {
                            // left right
                            sibling.right!.color = parent.color;
                            this.rotateLeft(sibling);
                            this.rotateRight(parent);
                        } else {
                            // right right
                            sibling.right!.color = sibling.color;
                            sibling.color = parent.color;
                            this.rotateLeft(parent);
                        }
                    }
                    parent.color = 1;
                } else {
                    // 2 black children
                    sibling.color = 0;
                    if (parent.color === 1) this.fixDoubleBlack(parent);
                    else parent.color = 1;
                }
            }
        }
    }

    insert(data: T): boolean {
        // search for a position to insert
        let parent = this.root;
        while (parent) {
            if (this.lt(data, parent.data)) {
                if (!parent.left) break;
                else parent = parent.left;
            } else if (this.lt(parent.data, data)) {
                if (!parent.right) break;
                else parent = parent.right;
            } else break;
        }

        // insert node into parent
        const node = new RBTreeNode(data);
        if (!parent) this.root = node;
        else if (this.lt(node.data, parent.data)) parent.left = node;
        else if (this.lt(parent.data, node.data)) parent.right = node;
        else {
            parent.count++;
            return false;
        }
        node.parent = parent;
        this.fixAfterInsert(node);
        return true;
    }

    find(data: T): RBTreeNode<T> | null {
        let p = this.root;
        while (p) {
            if (this.lt(data, p.data)) {
                p = p.left;
            } else if (this.lt(p.data, data)) {
                p = p.right;
            } else break;
        }
        return p ?? null;
    }

    *inOrder(root: RBTreeNode<T> = this.root!): Generator<T, undefined, void> {
        if (!root) return;
        for (const v of this.inOrder(root.left!)) yield v;
        yield root.data;
        for (const v of this.inOrder(root.right!)) yield v;
    }

    *reverseInOrder(root: RBTreeNode<T> = this.root!): Generator<T, undefined, void> {
        if (!root) return;
        for (const v of this.reverseInOrder(root.right!)) yield v;
        yield root.data;
        for (const v of this.reverseInOrder(root.left!)) yield v;
    }
}

class TreeSet<T = number> {
    _size: number;
    tree: RBTree<T>;
    compare: Compare<T>;
    constructor(
        collection: T[] | Compare<T> = [],
        compare: Compare<T> = (l: T, r: T) => (l < r ? -1 : l > r ? 1 : 0),
    ) {
        if (typeof collection === 'function') {
            compare = collection;
            collection = [];
        }
        this._size = 0;
        this.compare = compare;
        this.tree = new RBTree(compare);
        for (const val of collection) this.add(val);
    }

    size(): number {
        return this._size;
    }

    has(val: T): boolean {
        return !!this.tree.find(val);
    }

    add(val: T): boolean {
        const successful = this.tree.insert(val);
        this._size += successful ? 1 : 0;
        return successful;
    }

    delete(val: T): boolean {
        const deleted = this.tree.deleteAll(val);
        this._size -= deleted ? 1 : 0;
        return deleted;
    }

    ceil(val: T): T | undefined {
        let p = this.tree.root;
        let higher = null;
        while (p) {
            if (this.compare(p.data, val) >= 0) {
                higher = p;
                p = p.left;
            } else {
                p = p.right;
            }
        }
        return higher?.data;
    }

    floor(val: T): T | undefined {
        let p = this.tree.root;
        let lower = null;
        while (p) {
            if (this.compare(val, p.data) >= 0) {
                lower = p;
                p = p.right;
            } else {
                p = p.left;
            }
        }
        return lower?.data;
    }

    higher(val: T): T | undefined {
        let p = this.tree.root;
        let higher = null;
        while (p) {
            if (this.compare(val, p.data) < 0) {
                higher = p;
                p = p.left;
            } else {
                p = p.right;
            }
        }
        return higher?.data;
    }

    lower(val: T): T | undefined {
        let p = this.tree.root;
        let lower = null;
        while (p) {
            if (this.compare(p.data, val) < 0) {
                lower = p;
                p = p.right;
            } else {
                p = p.left;
            }
        }
        return lower?.data;
    }

    first(): T | undefined {
        return this.tree.inOrder().next().value;
    }

    last(): T | undefined {
        return this.tree.reverseInOrder().next().value;
    }

    shift(): T | undefined {
        const first = this.first();
        if (first === undefined) return undefined;
        this.delete(first);
        return first;
    }

    pop(): T | undefined {
        const last = this.last();
        if (last === undefined) return undefined;
        this.delete(last);
        return last;
    }

    *[Symbol.iterator](): Generator<T, void, void> {
        for (const val of this.values()) yield val;
    }

    *keys(): Generator<T, void, void> {
        for (const val of this.values()) yield val;
    }

    *values(): Generator<T, undefined, void> {
        for (const val of this.tree.inOrder()) yield val;
        return undefined;
    }

    /**
     * Return a generator for reverse order traversing the set
     */
    *rvalues(): Generator<T, undefined, void> {
        for (const val of this.tree.reverseInOrder()) yield val;
        return undefined;
    }
}

/**
 * Your DinnerPlates object will be instantiated and called as such:
 * var obj = new DinnerPlates(capacity)
 * obj.push(val)
 * var param_2 = obj.pop()
 * var param_3 = obj.popAtStack(index)
 */

评论