树
深度优先搜索
二叉树
题目描述
有两位极客玩家参与了一场「二叉树着色」的游戏。游戏中,给出二叉树的根节点 root
,树上总共有 n
个节点,且 n
为奇数,其中每个节点上的值从 1
到 n
各不相同。
最开始时:
「一号」玩家从 [1, n]
中取一个值 x
(1 <= x <= n
);
「二号」玩家也从 [1, n]
中取一个值 y
(1 <= y <= n
)且 y != x
。
「一号」玩家给值为 x
的节点染上红色,而「二号」玩家给值为 y
的节点染上蓝色。
之后两位玩家轮流进行操作,「一号」玩家先手。每一回合,玩家选择一个被他染过色的节点,将所选节点一个 未着色 的邻节点(即左右子节点、或父节点)进行染色(「一号」玩家染红色,「二号」玩家染蓝色)。
如果(且仅在此种情况下)当前玩家无法找到这样的节点来染色时,其回合就会被跳过。
若两个玩家都没有可以染色的节点时,游戏结束。着色节点最多的那位玩家获得胜利 ✌️。
现在,假设你是「二号」玩家,根据所给出的输入,假如存在一个 y
值可以确保你赢得这场游戏,则返回 true
;若无法获胜,就请返回 false
。
示例 1 :
输入: root = [1,2,3,4,5,6,7,8,9,10,11], n = 11, x = 3
输出: true
解释: 第二个玩家可以选择值为 2 的节点。
示例 2 :
输入: root = [1,2,3], n = 3, x = 1
输出: false
提示:
树中节点数目为 n
1 <= x <= n <= 100
n
是奇数
1 <= Node.val <= n
树中所有值 互不相同
解法
方法一:DFS
我们先通过 $DFS$,找到「一号」玩家着色点 $x$ 所在的节点,记为 $node$。
接下来,我们统计 $node$ 的左子树、右子树的节点个数,分别记为 $l$ 和 $r$,而 $node$ 父节点方向上的个数为 $n - l - r - 1$。只要满足 $\max(l, r, n - l - r - 1) > \frac{n}{2}$,则「二号」玩家存在一个必胜策略。
时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是节点总数。
Python3 Java C++ Go TypeScript JavaScript
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution :
def btreeGameWinningMove ( self , root : Optional [ TreeNode ], n : int , x : int ) -> bool :
def dfs ( root ):
if root is None or root . val == x :
return root
return dfs ( root . left ) or dfs ( root . right )
def count ( root ):
if root is None :
return 0
return 1 + count ( root . left ) + count ( root . right )
node = dfs ( root )
l , r = count ( node . left ), count ( node . right )
return max ( l , r , n - l - r - 1 ) > n // 2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean btreeGameWinningMove ( TreeNode root , int n , int x ) {
TreeNode node = dfs ( root , x );
int l = count ( node . left );
int r = count ( node . right );
return Math . max ( Math . max ( l , r ), n - l - r - 1 ) > n / 2 ;
}
private TreeNode dfs ( TreeNode root , int x ) {
if ( root == null || root . val == x ) {
return root ;
}
TreeNode node = dfs ( root . left , x );
return node == null ? dfs ( root . right , x ) : node ;
}
private int count ( TreeNode root ) {
if ( root == null ) {
return 0 ;
}
return 1 + count ( root . left ) + count ( root . right );
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public :
bool btreeGameWinningMove ( TreeNode * root , int n , int x ) {
auto node = dfs ( root , x );
int l = count ( node -> left ), r = count ( node -> right );
return max ({ l , r , n - l - r - 1 }) > n / 2 ;
}
TreeNode * dfs ( TreeNode * root , int x ) {
if ( ! root || root -> val == x ) {
return root ;
}
auto node = dfs ( root -> left , x );
return node ? node : dfs ( root -> right , x );
}
int count ( TreeNode * root ) {
if ( ! root ) {
return 0 ;
}
return 1 + count ( root -> left ) + count ( root -> right );
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33 /**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func btreeGameWinningMove ( root * TreeNode , n int , x int ) bool {
var dfs func ( * TreeNode ) * TreeNode
dfs = func ( root * TreeNode ) * TreeNode {
if root == nil || root . Val == x {
return root
}
node := dfs ( root . Left )
if node != nil {
return node
}
return dfs ( root . Right )
}
var count func ( * TreeNode ) int
count = func ( root * TreeNode ) int {
if root == nil {
return 0
}
return 1 + count ( root . Left ) + count ( root . Right )
}
node := dfs ( root )
l , r := count ( node . Left ), count ( node . Right )
return max ( max ( l , r ), n - l - r - 1 ) > n / 2
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34 /**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function btreeGameWinningMove ( root : TreeNode | null , n : number , x : number ) : boolean {
const dfs = ( root : TreeNode | null ) : TreeNode | null => {
if ( ! root || root . val === x ) {
return root ;
}
return dfs ( root . left ) || dfs ( root . right );
};
const count = ( root : TreeNode | null ) : number => {
if ( ! root ) {
return 0 ;
}
return 1 + count ( root . left ) + count ( root . right );
};
const node = dfs ( root );
const l = count ( node . left );
const r = count ( node . right );
return Math . max ( l , r , n - l - r - 1 ) > n / 2 ;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34 /**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @param {number} n
* @param {number} x
* @return {boolean}
*/
var btreeGameWinningMove = function ( root , n , x ) {
const dfs = root => {
if ( ! root || root . val === x ) {
return root ;
}
return dfs ( root . left ) || dfs ( root . right );
};
const count = root => {
if ( ! root ) {
return 0 ;
}
return 1 + count ( root . left ) + count ( root . right );
};
const node = dfs ( root );
const l = count ( node . left );
const r = count ( node . right );
return Math . max ( l , r , n - l - r - 1 ) > n / 2 ;
};
GitHub