题目描述
给你一个由若干 0
和 1
组成的二维网格 grid
,请你找出边界全部由 1
组成的最大 正方形 子网格,并返回该子网格中的元素数量。如果不存在,则返回 0
。
示例 1:
输入:grid = [[1,1,1],[1,0,1],[1,1,1]]
输出:9
示例 2:
输入:grid = [[1,1,0,0]]
输出:1
提示:
1 <= grid.length <= 100
1 <= grid[0].length <= 100
grid[i][j]
为 0
或 1
解法
方法一:前缀和 + 枚举
我们可以使用前缀和的方法预处理出每个位置向下和向右的连续 $1$ 的个数,记为 down[i][j]
和 right[i][j]
。
然后我们枚举正方形的边长 $k$,从最大的边长开始枚举,然后枚举正方形的左上角位置 $(i, j)$,如果满足条件,即可返回 $k^2$。
时间复杂度 $O(m \times n \times \min(m, n))$,空间复杂度 $O(m \times n)$。其中 $m$ 和 $n$ 分别是网格的行数和列数。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | class Solution:
def largest1BorderedSquare(self, grid: List[List[int]]) -> int:
m, n = len(grid), len(grid[0])
down = [[0] * n for _ in range(m)]
right = [[0] * n for _ in range(m)]
for i in range(m - 1, -1, -1):
for j in range(n - 1, -1, -1):
if grid[i][j]:
down[i][j] = down[i + 1][j] + 1 if i + 1 < m else 1
right[i][j] = right[i][j + 1] + 1 if j + 1 < n else 1
for k in range(min(m, n), 0, -1):
for i in range(m - k + 1):
for j in range(n - k + 1):
if (
down[i][j] >= k
and right[i][j] >= k
and right[i + k - 1][j] >= k
and down[i][j + k - 1] >= k
):
return k * k
return 0
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | class Solution {
public int largest1BorderedSquare(int[][] grid) {
int m = grid.length, n = grid[0].length;
int[][] down = new int[m][n];
int[][] right = new int[m][n];
for (int i = m - 1; i >= 0; --i) {
for (int j = n - 1; j >= 0; --j) {
if (grid[i][j] == 1) {
down[i][j] = i + 1 < m ? down[i + 1][j] + 1 : 1;
right[i][j] = j + 1 < n ? right[i][j + 1] + 1 : 1;
}
}
}
for (int k = Math.min(m, n); k > 0; --k) {
for (int i = 0; i <= m - k; ++i) {
for (int j = 0; j <= n - k; ++j) {
if (down[i][j] >= k && right[i][j] >= k && right[i + k - 1][j] >= k
&& down[i][j + k - 1] >= k) {
return k * k;
}
}
}
}
return 0;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | class Solution {
public:
int largest1BorderedSquare(vector<vector<int>>& grid) {
int m = grid.size(), n = grid[0].size();
int down[m][n];
int right[m][n];
memset(down, 0, sizeof down);
memset(right, 0, sizeof right);
for (int i = m - 1; i >= 0; --i) {
for (int j = n - 1; j >= 0; --j) {
if (grid[i][j] == 1) {
down[i][j] = i + 1 < m ? down[i + 1][j] + 1 : 1;
right[i][j] = j + 1 < n ? right[i][j + 1] + 1 : 1;
}
}
}
for (int k = min(m, n); k > 0; --k) {
for (int i = 0; i <= m - k; ++i) {
for (int j = 0; j <= n - k; ++j) {
if (down[i][j] >= k && right[i][j] >= k && right[i + k - 1][j] >= k
&& down[i][j + k - 1] >= k) {
return k * k;
}
}
}
}
return 0;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 | func largest1BorderedSquare(grid [][]int) int {
m, n := len(grid), len(grid[0])
down := make([][]int, m)
right := make([][]int, m)
for i := range down {
down[i] = make([]int, n)
right[i] = make([]int, n)
}
for i := m - 1; i >= 0; i-- {
for j := n - 1; j >= 0; j-- {
if grid[i][j] == 1 {
down[i][j], right[i][j] = 1, 1
if i+1 < m {
down[i][j] += down[i+1][j]
}
if j+1 < n {
right[i][j] += right[i][j+1]
}
}
}
}
for k := min(m, n); k > 0; k-- {
for i := 0; i <= m-k; i++ {
for j := 0; j <= n-k; j++ {
if down[i][j] >= k && right[i][j] >= k && right[i+k-1][j] >= k && down[i][j+k-1] >= k {
return k * k
}
}
}
}
return 0
}
|