题目描述
泰波那契序列 Tn 定义如下:
T0 = 0, T1 = 1, T2 = 1, 且在 n >= 0 的条件下 Tn+3 = Tn + Tn+1 + Tn+2
给你整数 n
,请返回第 n 个泰波那契数 Tn 的值。
示例 1:
输入:n = 4
输出:4
解释:
T_3 = 0 + 1 + 1 = 2
T_4 = 1 + 1 + 2 = 4
示例 2:
输入:n = 25
输出:1389537
提示:
0 <= n <= 37
- 答案保证是一个 32 位整数,即
answer <= 2^31 - 1
。
解法
方法一:动态规划
根据题目中给出的递推式,我们可以使用动态规划求解。
我们定义三个变量 $a$, $b$, $c$,分别表示 $T_{n-3}$, $T_{n-2}$, $T_{n-1}$,初始值分别为 $0$, $1$, $1$。
然后从 $n$ 减小到 $0$,每次更新 $a$, $b$, $c$ 的值,直到 $n$ 为 $0$ 时,答案即为 $a$。
时间复杂度 $O(n)$,空间复杂度 $O(1)$。其中 $n$ 为给定的整数。
| class Solution:
def tribonacci(self, n: int) -> int:
a, b, c = 0, 1, 1
for _ in range(n):
a, b, c = b, c, a + b + c
return a
|
1
2
3
4
5
6
7
8
9
10
11
12 | class Solution {
public int tribonacci(int n) {
int a = 0, b = 1, c = 1;
while (n-- > 0) {
int d = a + b + c;
a = b;
b = c;
c = d;
}
return a;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13 | class Solution {
public:
int tribonacci(int n) {
long long a = 0, b = 1, c = 1;
while (n--) {
long long d = a + b + c;
a = b;
b = c;
c = d;
}
return (int) a;
}
};
|
| func tribonacci(n int) int {
a, b, c := 0, 1, 1
for i := 0; i < n; i++ {
a, b, c = b, c, a+b+c
}
return a
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39 | function tribonacci(n: number): number {
if (n === 0) {
return 0;
}
if (n < 3) {
return 1;
}
const a = [
[1, 1, 0],
[1, 0, 1],
[1, 0, 0],
];
return pow(a, n - 3)[0].reduce((a, b) => a + b);
}
function mul(a: number[][], b: number[][]): number[][] {
const [m, n] = [a.length, b[0].length];
const c = Array.from({ length: m }, () => Array.from({ length: n }, () => 0));
for (let i = 0; i < m; ++i) {
for (let j = 0; j < n; ++j) {
for (let k = 0; k < b.length; ++k) {
c[i][j] += a[i][k] * b[k][j];
}
}
}
return c;
}
function pow(a: number[][], n: number): number[][] {
let res = [[1, 1, 0]];
while (n) {
if (n & 1) {
res = mul(res, a);
}
a = mul(a, a);
n >>= 1;
}
return res;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 | /**
* @param {number} n
* @return {number}
*/
var tribonacci = function (n) {
let a = 0;
let b = 1;
let c = 1;
while (n--) {
let d = a + b + c;
a = b;
b = c;
c = d;
}
return a;
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | class Solution {
/**
* @param Integer $n
* @return Integer
*/
function tribonacci($n) {
if ($n == 0) {
return 0;
} elseif ($n == 1 || $n == 2) {
return 1;
}
$dp = [0, 1, 1];
for ($i = 3; $i <= $n; $i++) {
$dp[$i] = $dp[$i - 1] + $dp[$i - 2] + $dp[$i - 3];
}
return $dp[$n];
}
}
|
方法二:矩阵快速幂加速递推
我们设 $Tib(n)$ 表示一个 $1 \times 3$ 的矩阵 $\begin{bmatrix} T_n & T_{n - 1} & T_{n - 2} \end{bmatrix}$,其中 $T_n$, $T_{n - 1}$ 和 $T_{n - 2}$ 分别表示第 $n$ 个、第 $n - 1$ 个和第 $n - 2$ 个泰波那契数。
我们希望根据 $Tib(n-1) = \begin{bmatrix} T_{n - 1} & T_{n - 2} & T_{n - 3} \end{bmatrix}$ 推出 $Tib(n)$。也即是说,我们需要一个矩阵 $base$,使得 $Tib(n - 1) \times base = Tib(n)$,即:
$$
\begin{bmatrix}
T_{n - 1} & T_{n - 2} & T_{n - 3}
\end{bmatrix} \times base = \begin{bmatrix} T_n & T_{n - 1} & T_{n - 2} \end{bmatrix}
$$
由于 $T_n = T_{n - 1} + T_{n - 2} + T_{n - 3}$,所以矩阵 $base$ 为:
$$
\begin{bmatrix}
1 & 1 & 0 \
1 & 0 & 1 \
1 & 0 & 0
\end{bmatrix}
$$
我们定义初始矩阵 $res = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$,那么 $T_n$ 等于 $res$ 乘以 $base^{n - 3}$ 的结果矩阵中所有元素之和。使用矩阵快速幂求解即可。
时间复杂度 $O(\log n)$,空间复杂度 $O(1)$。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | import numpy as np
class Solution:
def tribonacci(self, n: int) -> int:
if n == 0:
return 0
if n < 3:
return 1
factor = np.asmatrix([(1, 1, 0), (1, 0, 1), (1, 0, 0)], np.dtype("O"))
res = np.asmatrix([(1, 1, 0)], np.dtype("O"))
n -= 3
while n:
if n & 1:
res *= factor
factor *= factor
n >>= 1
return res.sum()
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42 | class Solution {
public int tribonacci(int n) {
if (n == 0) {
return 0;
}
if (n < 3) {
return 1;
}
int[][] a = {{1, 1, 0}, {1, 0, 1}, {1, 0, 0}};
int[][] res = pow(a, n - 3);
int ans = 0;
for (int x : res[0]) {
ans += x;
}
return ans;
}
private int[][] mul(int[][] a, int[][] b) {
int m = a.length, n = b[0].length;
int[][] c = new int[m][n];
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
for (int k = 0; k < b.length; ++k) {
c[i][j] += a[i][k] * b[k][j];
}
}
}
return c;
}
private int[][] pow(int[][] a, int n) {
int[][] res = {{1, 1, 0}};
while (n > 0) {
if ((n & 1) == 1) {
res = mul(res, a);
}
a = mul(a, a);
n >>= 1;
}
return res;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41 | class Solution {
public:
int tribonacci(int n) {
if (n == 0) {
return 0;
}
if (n < 3) {
return 1;
}
vector<vector<ll>> a = {{1, 1, 0}, {1, 0, 1}, {1, 0, 0}};
vector<vector<ll>> res = pow(a, n - 3);
return accumulate(res[0].begin(), res[0].end(), 0);
}
private:
using ll = long long;
vector<vector<ll>> mul(vector<vector<ll>>& a, vector<vector<ll>>& b) {
int m = a.size(), n = b[0].size();
vector<vector<ll>> c(m, vector<ll>(n));
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
for (int k = 0; k < b.size(); ++k) {
c[i][j] += a[i][k] * b[k][j];
}
}
}
return c;
}
vector<vector<ll>> pow(vector<vector<ll>>& a, int n) {
vector<vector<ll>> res = {{1, 1, 0}};
while (n) {
if (n & 1) {
res = mul(res, a);
}
a = mul(a, a);
n >>= 1;
}
return res;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42 | func tribonacci(n int) (ans int) {
if n == 0 {
return 0
}
if n < 3 {
return 1
}
a := [][]int{{1, 1, 0}, {1, 0, 1}, {1, 0, 0}}
res := pow(a, n-3)
for _, x := range res[0] {
ans += x
}
return
}
func mul(a, b [][]int) [][]int {
m, n := len(a), len(b[0])
c := make([][]int, m)
for i := range c {
c[i] = make([]int, n)
}
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
for k := 0; k < len(b); k++ {
c[i][j] += a[i][k] * b[k][j]
}
}
}
return c
}
func pow(a [][]int, n int) [][]int {
res := [][]int{{1, 1, 0}}
for n > 0 {
if n&1 == 1 {
res = mul(res, a)
}
a = mul(a, a)
n >>= 1
}
return res
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43 | /**
* @param {number} n
* @return {number}
*/
var tribonacci = function (n) {
if (n === 0) {
return 0;
}
if (n < 3) {
return 1;
}
const a = [
[1, 1, 0],
[1, 0, 1],
[1, 0, 0],
];
return pow(a, n - 3)[0].reduce((a, b) => a + b);
};
function mul(a, b) {
const [m, n] = [a.length, b[0].length];
const c = Array.from({ length: m }, () => Array.from({ length: n }, () => 0));
for (let i = 0; i < m; ++i) {
for (let j = 0; j < n; ++j) {
for (let k = 0; k < b.length; ++k) {
c[i][j] += a[i][k] * b[k][j];
}
}
}
return c;
}
function pow(a, n) {
let res = [[1, 1, 0]];
while (n) {
if (n & 1) {
res = mul(res, a);
}
a = mul(a, a);
n >>= 1;
}
return res;
}
|