树
深度优先搜索
回溯
二叉树
题目描述
给你二叉树的根节点 root
和一个整数目标和 targetSum
,找出所有 从根节点到叶子节点 路径总和等于给定目标和的路径。
叶子节点 是指没有子节点的节点。
示例 1:
输入: root = [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum = 22
输出: [[5,4,11,2],[5,8,4,5]]
示例 2:
输入: root = [1,2,3], targetSum = 5
输出: []
示例 3:
输入: root = [1,2], targetSum = 0
输出: []
提示:
树中节点总数在范围 [0, 5000]
内
-1000 <= Node.val <= 1000
-1000 <= targetSum <= 1000
解法
方法一:DFS
我们从根节点开始,递归遍历所有从根节点到叶子节点的路径,并记录路径和。当遍历到叶子节点时,如果此时路径和等于 targetSum
,则将此路径加入答案。
时间复杂度 $O(n^2)$,其中 $n$ 是二叉树的节点数。空间复杂度 $O(n)$。
Python3 Java C++ Go Rust JavaScript
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution :
def pathSum ( self , root : Optional [ TreeNode ], targetSum : int ) -> List [ List [ int ]]:
def dfs ( root , s ):
if root is None :
return
s += root . val
t . append ( root . val )
if root . left is None and root . right is None and s == targetSum :
ans . append ( t [:])
dfs ( root . left , s )
dfs ( root . right , s )
t . pop ()
ans = []
t = []
dfs ( root , 0 )
return ans
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private List < List < Integer >> ans = new ArrayList <> ();
private List < Integer > t = new ArrayList <> ();
public List < List < Integer >> pathSum ( TreeNode root , int targetSum ) {
dfs ( root , targetSum );
return ans ;
}
private void dfs ( TreeNode root , int s ) {
if ( root == null ) {
return ;
}
s -= root . val ;
t . add ( root . val );
if ( root . left == null && root . right == null && s == 0 ) {
ans . add ( new ArrayList <> ( t ));
}
dfs ( root . left , s );
dfs ( root . right , s );
t . remove ( t . size () - 1 );
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public :
vector < vector < int >> pathSum ( TreeNode * root , int targetSum ) {
vector < vector < int >> ans ;
vector < int > t ;
function < void ( TreeNode * , int ) > dfs = [ & ]( TreeNode * root , int s ) {
if ( ! root ) return ;
s -= root -> val ;
t . emplace_back ( root -> val );
if ( ! root -> left && ! root -> right && s == 0 ) ans . emplace_back ( t );
dfs ( root -> left , s );
dfs ( root -> right , s );
t . pop_back ();
};
dfs ( root , targetSum );
return ans ;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 /**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func pathSum ( root * TreeNode , targetSum int ) ( ans [][] int ) {
t := [] int {}
var dfs func ( * TreeNode , int )
dfs = func ( root * TreeNode , s int ) {
if root == nil {
return
}
s -= root . Val
t = append ( t , root . Val )
if root . Left == nil && root . Right == nil && s == 0 {
ans = append ( ans , slices . Clone ( t ))
}
dfs ( root . Left , s )
dfs ( root . Right , s )
t = t [: len ( t ) - 1 ]
}
dfs ( root , targetSum )
return
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54 // Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std :: cell :: RefCell ;
use std :: rc :: Rc ;
impl Solution {
fn dfs (
root : Option < Rc < RefCell < TreeNode >>> ,
paths : & mut Vec < i32 > ,
mut target_sum : i32 ,
res : & mut Vec < Vec < i32 >> ,
) {
if let Some ( node ) = root {
let mut node = node . borrow_mut ();
target_sum -= node . val ;
paths . push ( node . val );
if node . left . is_none () && node . right . is_none () {
if target_sum == 0 {
res . push ( paths . clone ());
}
} else {
if node . left . is_some () {
Self :: dfs ( node . left . take (), paths , target_sum , res );
}
if node . right . is_some () {
Self :: dfs ( node . right . take (), paths , target_sum , res );
}
}
paths . pop ();
}
}
pub fn path_sum ( root : Option < Rc < RefCell < TreeNode >>> , target_sum : i32 ) -> Vec < Vec < i32 >> {
let mut res = vec! [];
let mut paths = vec! [];
Self :: dfs ( root , & mut paths , target_sum , & mut res );
res
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 /**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @param {number} targetSum
* @return {number[][]}
*/
var pathSum = function ( root , targetSum ) {
const ans = [];
const t = [];
function dfs ( root , s ) {
if ( ! root ) return ;
s -= root . val ;
t . push ( root . val );
if ( ! root . left && ! root . right && s == 0 ) ans . push ([... t ]);
dfs ( root . left , s );
dfs ( root . right , s );
t . pop ();
}
dfs ( root , targetSum );
return ans ;
};
GitHub