树
深度优先搜索
广度优先搜索
二叉树
题目描述
给你二叉树的根节点 root
和一个表示目标和的整数 targetSum
。判断该树中是否存在 根节点到叶子节点 的路径,这条路径上所有节点值相加等于目标和 targetSum
。如果存在,返回 true
;否则,返回 false
。
叶子节点 是指没有子节点的节点。
示例 1:
输入: root = [5,4,8,11,null,13,4,7,2,null,null,null,1], targetSum = 22
输出: true
解释: 等于目标和的根节点到叶节点路径如上图所示。
示例 2:
输入: root = [1,2,3], targetSum = 5
输出: false
解释: 树中存在两条根节点到叶子节点的路径:
(1 --> 2): 和为 3
(1 --> 3): 和为 4
不存在 sum = 5 的根节点到叶子节点的路径。
示例 3:
输入: root = [], targetSum = 0
输出: false
解释: 由于树是空的,所以不存在根节点到叶子节点的路径。
提示:
树中节点的数目在范围 [0, 5000]
内
-1000 <= Node.val <= 1000
-1000 <= targetSum <= 1000
解法
方法一:递归
从根节点开始,递归地对树进行遍历,并在遍历过程中更新节点的值为从根节点到该节点的路径和。当遍历到叶子节点时,判断该路径和是否等于目标值,如果相等则返回 true
,否则返回 false
。
时间复杂度 $O(n)$,其中 $n$ 是二叉树的节点数。对每个节点访问一次。
Python3 Java C++ Go TypeScript Rust JavaScript
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution :
def hasPathSum ( self , root : Optional [ TreeNode ], targetSum : int ) -> bool :
def dfs ( root , s ):
if root is None :
return False
s += root . val
if root . left is None and root . right is None and s == targetSum :
return True
return dfs ( root . left , s ) or dfs ( root . right , s )
return dfs ( root , 0 )
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean hasPathSum ( TreeNode root , int targetSum ) {
return dfs ( root , targetSum );
}
private boolean dfs ( TreeNode root , int s ) {
if ( root == null ) {
return false ;
}
s -= root . val ;
if ( root . left == null && root . right == null && s == 0 ) {
return true ;
}
return dfs ( root . left , s ) || dfs ( root . right , s );
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public :
bool hasPathSum ( TreeNode * root , int targetSum ) {
function < bool ( TreeNode * , int ) > dfs = [ & ]( TreeNode * root , int s ) -> int {
if ( ! root ) return false ;
s += root -> val ;
if ( ! root -> left && ! root -> right && s == targetSum ) return true ;
return dfs ( root -> left , s ) || dfs ( root -> right , s );
};
return dfs ( root , 0 );
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 /**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func hasPathSum ( root * TreeNode , targetSum int ) bool {
var dfs func ( * TreeNode , int ) bool
dfs = func ( root * TreeNode , s int ) bool {
if root == nil {
return false
}
s += root . Val
if root . Left == nil && root . Right == nil && s == targetSum {
return true
}
return dfs ( root . Left , s ) || dfs ( root . Right , s )
}
return dfs ( root , 0 )
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 /**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function hasPathSum ( root : TreeNode | null , targetSum : number ) : boolean {
if ( root === null ) {
return false ;
}
const { val , left , right } = root ;
if ( left === null && right === null ) {
return targetSum - val === 0 ;
}
return hasPathSum ( left , targetSum - val ) || hasPathSum ( right , targetSum - val );
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37 // Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std :: cell :: RefCell ;
use std :: rc :: Rc ;
impl Solution {
pub fn has_path_sum ( root : Option < Rc < RefCell < TreeNode >>> , target_sum : i32 ) -> bool {
match root {
None => false ,
Some ( node ) => {
let mut node = node . borrow_mut ();
// 确定叶结点身份
if node . left . is_none () && node . right . is_none () {
return target_sum - node . val == 0 ;
}
let val = node . val ;
Self :: has_path_sum ( node . left . take (), target_sum - val )
|| Self :: has_path_sum ( node . right . take (), target_sum - val )
}
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 /**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @param {number} targetSum
* @return {boolean}
*/
var hasPathSum = function ( root , targetSum ) {
function dfs ( root , s ) {
if ( ! root ) return false ;
s += root . val ;
if ( ! root . left && ! root . right && s == targetSum ) return true ;
return dfs ( root . left , s ) || dfs ( root . right , s );
}
return dfs ( root , 0 );
};