跳转至

1109. 航班预订统计

题目描述

这里有 n 个航班,它们分别从 1n 进行编号。

有一份航班预订表 bookings ,表中第 i 条预订记录 bookings[i] = [firsti, lasti, seatsi] 意味着在从 firsti 到 lasti包含 firstilasti )的 每个航班 上预订了 seatsi 个座位。

请你返回一个长度为 n 的数组 answer,里面的元素是每个航班预定的座位总数。

 

示例 1:

输入:bookings = [[1,2,10],[2,3,20],[2,5,25]], n = 5
输出:[10,55,45,25,25]
解释:
航班编号        1   2   3   4   5
预订记录 1 :   10  10
预订记录 2 :       20  20
预订记录 3 :       25  25  25  25
总座位数:      10  55  45  25  25
因此,answer = [10,55,45,25,25]

示例 2:

输入:bookings = [[1,2,10],[2,2,15]], n = 2
输出:[10,25]
解释:
航班编号        1   2
预订记录 1 :   10  10
预订记录 2 :       15
总座位数:      10  25
因此,answer = [10,25]

 

提示:

  • 1 <= n <= 2 * 104
  • 1 <= bookings.length <= 2 * 104
  • bookings[i].length == 3
  • 1 <= firsti <= lasti <= n
  • 1 <= seatsi <= 104

解法

方法一:差分数组

我们注意到,每一次预订都是在某个区间 [first, last] 内的所有航班上预订了 seats 个座位。因此,我们可以利用差分数组的思想,对于每一次预订,将 first 位置的数加上 seats,将 last + 1 位置的数减去 seats。最后,对差分数组求前缀和,即可得到每个航班预定的座位总数。

时间复杂度 $O(n)$,其中 $n$ 为航班数。忽略答案的空间消耗,空间复杂度 $O(1)$。

1
2
3
4
5
6
7
8
class Solution:
    def corpFlightBookings(self, bookings: List[List[int]], n: int) -> List[int]:
        ans = [0] * n
        for first, last, seats in bookings:
            ans[first - 1] += seats
            if last < n:
                ans[last] -= seats
        return list(accumulate(ans))
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
class Solution {
    public int[] corpFlightBookings(int[][] bookings, int n) {
        int[] ans = new int[n];
        for (var e : bookings) {
            int first = e[0], last = e[1], seats = e[2];
            ans[first - 1] += seats;
            if (last < n) {
                ans[last] -= seats;
            }
        }
        for (int i = 1; i < n; ++i) {
            ans[i] += ans[i - 1];
        }
        return ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
class Solution {
public:
    vector<int> corpFlightBookings(vector<vector<int>>& bookings, int n) {
        vector<int> ans(n);
        for (auto& e : bookings) {
            int first = e[0], last = e[1], seats = e[2];
            ans[first - 1] += seats;
            if (last < n) {
                ans[last] -= seats;
            }
        }
        for (int i = 1; i < n; ++i) {
            ans[i] += ans[i - 1];
        }
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
func corpFlightBookings(bookings [][]int, n int) []int {
    ans := make([]int, n)
    for _, e := range bookings {
        first, last, seats := e[0], e[1], e[2]
        ans[first-1] += seats
        if last < n {
            ans[last] -= seats
        }
    }
    for i := 1; i < n; i++ {
        ans[i] += ans[i-1]
    }
    return ans
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
impl Solution {
    #[allow(dead_code)]
    pub fn corp_flight_bookings(bookings: Vec<Vec<i32>>, n: i32) -> Vec<i32> {
        let mut ans = vec![0; n as usize];

        // Build the difference vector first
        for b in &bookings {
            let (l, r) = ((b[0] as usize) - 1, (b[1] as usize) - 1);
            ans[l] += b[2];
            if r < (n as usize) - 1 {
                ans[r + 1] -= b[2];
            }
        }

        // Build the prefix sum vector based on the difference vector
        for i in 1..n as usize {
            ans[i] += ans[i - 1];
        }

        ans
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
/**
 * @param {number[][]} bookings
 * @param {number} n
 * @return {number[]}
 */
var corpFlightBookings = function (bookings, n) {
    const ans = new Array(n).fill(0);
    for (const [first, last, seats] of bookings) {
        ans[first - 1] += seats;
        if (last < n) {
            ans[last] -= seats;
        }
    }
    for (let i = 1; i < n; ++i) {
        ans[i] += ans[i - 1];
    }
    return ans;
};

方法二:树状数组 + 差分思想

我们也可以利用树状数组,结合差分的思想,来实现上述操作。我们可以将每一次预订看作是在某个区间 [first, last] 内的所有航班上预订了 seats 个座位。因此,我们可以对每一次预订,对树状数组的 first 位置加上 seats,对树状数组的 last + 1 位置减去 seats。最后,对树状数组每个位置求前缀和,即可得到每个航班预定的座位总数。

时间复杂度 $O(n \times \log n)$,空间复杂度 $O(n)$。其中 $n$ 为航班数。

以下是树状数组的基本介绍:

树状数组,也称作“二叉索引树”(Binary Indexed Tree)或 Fenwick 树。 它可以高效地实现如下两个操作:

  1. 单点更新 update(x, delta): 把序列 x 位置的数加上一个值 delta;
  2. 前缀和查询 query(x):查询序列 [1,...x] 区间的区间和,即位置 x 的前缀和。

这两个操作的时间复杂度均为 $O(\log n)$。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
class BinaryIndexedTree:
    def __init__(self, n):
        self.n = n
        self.c = [0] * (n + 1)

    def update(self, x, delta):
        while x <= self.n:
            self.c[x] += delta
            x += x & -x

    def query(self, x):
        s = 0
        while x:
            s += self.c[x]
            x -= x & -x
        return s


class Solution:
    def corpFlightBookings(self, bookings: List[List[int]], n: int) -> List[int]:
        tree = BinaryIndexedTree(n)
        for first, last, seats in bookings:
            tree.update(first, seats)
            tree.update(last + 1, -seats)
        return [tree.query(i + 1) for i in range(n)]
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
class Solution {
    public int[] corpFlightBookings(int[][] bookings, int n) {
        BinaryIndexedTree tree = new BinaryIndexedTree(n);
        for (var e : bookings) {
            int first = e[0], last = e[1], seats = e[2];
            tree.update(first, seats);
            tree.update(last + 1, -seats);
        }
        int[] ans = new int[n];
        for (int i = 0; i < n; ++i) {
            ans[i] = tree.query(i + 1);
        }
        return ans;
    }
}

class BinaryIndexedTree {
    private int n;
    private int[] c;

    public BinaryIndexedTree(int n) {
        this.n = n;
        c = new int[n + 1];
    }

    public void update(int x, int delta) {
        while (x <= n) {
            c[x] += delta;
            x += x & -x;
        }
    }

    public int query(int x) {
        int s = 0;
        while (x > 0) {
            s += c[x];
            x -= x & -x;
        }
        return s;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
class BinaryIndexedTree {
public:
    BinaryIndexedTree(int _n)
        : n(_n)
        , c(_n + 1) {}

    void update(int x, int delta) {
        while (x <= n) {
            c[x] += delta;
            x += x & -x;
        }
    }

    int query(int x) {
        int s = 0;
        while (x) {
            s += c[x];
            x -= x & -x;
        }
        return s;
    }

private:
    int n;
    vector<int> c;
};

class Solution {
public:
    vector<int> corpFlightBookings(vector<vector<int>>& bookings, int n) {
        BinaryIndexedTree* tree = new BinaryIndexedTree(n);
        for (auto& e : bookings) {
            int first = e[0], last = e[1], seats = e[2];
            tree->update(first, seats);
            tree->update(last + 1, -seats);
        }
        vector<int> ans(n);
        for (int i = 0; i < n; ++i) {
            ans[i] = tree->query(i + 1);
        }
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
type BinaryIndexedTree struct {
    n int
    c []int
}

func newBinaryIndexedTree(n int) *BinaryIndexedTree {
    c := make([]int, n+1)
    return &BinaryIndexedTree{n, c}
}

func (this *BinaryIndexedTree) update(x, delta int) {
    for x <= this.n {
        this.c[x] += delta
        x += x & -x
    }
}

func (this *BinaryIndexedTree) query(x int) int {
    s := 0
    for x > 0 {
        s += this.c[x]
        x -= x & -x
    }
    return s
}

func corpFlightBookings(bookings [][]int, n int) []int {
    tree := newBinaryIndexedTree(n)
    for _, e := range bookings {
        first, last, seats := e[0], e[1], e[2]
        tree.update(first, seats)
        tree.update(last+1, -seats)
    }
    ans := make([]int, n)
    for i := range ans {
        ans[i] = tree.query(i + 1)
    }
    return ans
}

评论