树
深度优先搜索
二叉树
题目描述
给定一个二叉树,判断它是否是 平衡二叉树
示例 1:
输入: root = [3,9,20,null,null,15,7]
输出: true
示例 2:
输入: root = [1,2,2,3,3,null,null,4,4]
输出: false
示例 3:
输入: root = []
输出: true
提示:
树中的节点数在范围 [0, 5000]
内
-104 <= Node.val <= 104
解法
方法一:自底向上的递归
定义函数 $height(root)$ 计算二叉树的高度,处理逻辑如下:
如果二叉树 $root$ 为空,返回 $0$。
否则,递归计算左右子树的高度,分别为 $l$ 和 $r$。如果 $l$ 或 $r$ 为 $-1$,或者 $l$ 和 $r$ 的差的绝对值大于 $1$,则返回 $-1$,否则返回 $max(l, r) + 1$。
那么,如果函数 $height(root)$ 返回的是 $-1$,则说明二叉树 $root$ 不是平衡二叉树,否则是平衡二叉树。
时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是二叉树的节点数。
Python3 Java C++ Go TypeScript Rust JavaScript
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution :
def isBalanced ( self , root : Optional [ TreeNode ]) -> bool :
def height ( root ):
if root is None :
return 0
l , r = height ( root . left ), height ( root . right )
if l == - 1 or r == - 1 or abs ( l - r ) > 1 :
return - 1
return 1 + max ( l , r )
return height ( root ) >= 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean isBalanced ( TreeNode root ) {
return height ( root ) >= 0 ;
}
private int height ( TreeNode root ) {
if ( root == null ) {
return 0 ;
}
int l = height ( root . left );
int r = height ( root . right );
if ( l == - 1 || r == - 1 || Math . abs ( l - r ) > 1 ) {
return - 1 ;
}
return 1 + Math . max ( l , r );
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public :
bool isBalanced ( TreeNode * root ) {
function < int ( TreeNode * ) > height = [ & ]( TreeNode * root ) {
if ( ! root ) {
return 0 ;
}
int l = height ( root -> left );
int r = height ( root -> right );
if ( l == -1 || r == -1 || abs ( l - r ) > 1 ) {
return -1 ;
}
return 1 + max ( l , r );
};
return height ( root ) >= 0 ;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 /**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func isBalanced ( root * TreeNode ) bool {
var height func ( * TreeNode ) int
height = func ( root * TreeNode ) int {
if root == nil {
return 0
}
l , r := height ( root . Left ), height ( root . Right )
if l == - 1 || r == - 1 || abs ( l - r ) > 1 {
return - 1
}
if l > r {
return 1 + l
}
return 1 + r
}
return height ( root ) >= 0
}
func abs ( x int ) int {
if x < 0 {
return - x
}
return x
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 /**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function isBalanced ( root : TreeNode | null ) : boolean {
const dfs = ( root : TreeNode | null ) => {
if ( root == null ) {
return 0 ;
}
const left = dfs ( root . left );
const right = dfs ( root . right );
if ( left === - 1 || right === - 1 || Math . abs ( left - right ) > 1 ) {
return - 1 ;
}
return 1 + Math . max ( left , right );
};
return dfs ( root ) > - 1 ;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 // Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std :: cell :: RefCell ;
use std :: rc :: Rc ;
impl Solution {
pub fn is_balanced ( root : Option < Rc < RefCell < TreeNode >>> ) -> bool {
Self :: dfs ( & root ) > - 1
}
fn dfs ( root : & Option < Rc < RefCell < TreeNode >>> ) -> i32 {
if root . is_none () {
return 0 ;
}
let node = root . as_ref (). unwrap (). borrow ();
let left = Self :: dfs ( & node . left );
let right = Self :: dfs ( & node . right );
if left == - 1 || right == - 1 || ( left - right ). abs () > 1 {
return - 1 ;
}
1 + left . max ( right )
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 /**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {boolean}
*/
var isBalanced = function ( root ) {
const height = root => {
if ( ! root ) {
return 0 ;
}
const l = height ( root . left );
const r = height ( root . right );
if ( l == - 1 || r == - 1 || Math . abs ( l - r ) > 1 ) {
return - 1 ;
}
return 1 + Math . max ( l , r );
};
return height ( root ) >= 0 ;
};