题目描述
在由 2D 网格表示的校园里有 n
位工人(worker
)和 m
辆自行车(bike
),n <= m
。所有工人和自行车的位置都用网格上的 2D 坐标表示。
我们为每一位工人分配一辆专属自行车,使每个工人与其分配到的自行车之间的 曼哈顿距离 最小化。
返回 每个工人与分配到的自行车之间的曼哈顿距离的最小可能总和
。
p1
和 p2
之间的 曼哈顿距离 为 Manhattan(p1, p2) = |p1.x - p2.x| + |p1.y - p2.y|
。
示例 1:
输入:workers = [[0,0],[2,1]], bikes = [[1,2],[3,3]]
输出:6
解释:
自行车 0 分配给工人 0,自行车 1 分配给工人 1 。分配得到的曼哈顿距离都是 3, 所以输出为 6 。
示例 2:
输入:workers = [[0,0],[1,1],[2,0]], bikes = [[1,0],[2,2],[2,1]]
输出:4
解释:
先将自行车 0 分配给工人 0,再将自行车 1 分配给工人 1(或工人 2),自行车 2 给工人 2(或工人 1)。如此分配使得曼哈顿距离的总和为 4。
示例 3:
输入:workers = [[0,0],[1,0],[2,0],[3,0],[4,0]], bikes = [[0,999],[1,999],[2,999],[3,999],[4,999]]
输出:4995
提示:
n == workers.length
m == bikes.length
1 <= n <= m <= 10
workers[i].length == 2
bikes[i].length == 2
0 <= workers[i][0], workers[i][1], bikes[i][0], bikes[i][1] < 1000
- 所有的工人和自行车的位置都是 不同 的。
解法
方法一:状态压缩动态规划
我们定义 $f[i][j]$ 表示前 $i$ 个工人分配到自行车的状态为 $j$ 时的最小曼哈顿距离总和,其中 $j$ 是一个二进制数,表示自行车的分配情况。初始时 $f[0][0]=0$,其余 $f[0][j]=+\infty$。
考虑 $f[i][j]$,我们枚举第 $i$ 个工人分配到的自行车的编号 $k$,那么 $f[i][j]$ 可以从 $f[i-1][j\oplus 2^k]$ 转移而来,其中 $\oplus$ 表示异或运算。这是因为 $f[i-1][j\oplus 2^k]$ 表示前 $i-1$ 个工人分配到自行车的状态为 $j\oplus 2^k$ 时的最小曼哈顿距离总和,而第 $i$ 个工人分配到自行车 $k$ 时,其曼哈顿距离为 $|worker[i]-bike[k]|$,其中 $|x|$ 表示 $x$ 的绝对值。因此我们可以列出状态转移方程:
$$
f[i][j]=\min_{k=0}^{m-1}{f[i-1][j\oplus 2^k]+|worker[i]-bike[k]|}
$$
最终的答案为 $\min_{j=0}{2m-1}{f[n][j]}$。
时间复杂度 $O(n \times 2^m \times m)$,空间复杂度 $O(n \times 2^m)$。其中 $n$ 和 $m$ 分别是工人和自行车的数量。
1
2
3
4
5
6
7
8
9
10
11
12
13
14 | class Solution:
def assignBikes(self, workers: List[List[int]], bikes: List[List[int]]) -> int:
n, m = len(workers), len(bikes)
f = [[inf] * (1 << m) for _ in range(n + 1)]
f[0][0] = 0
for i, (x1, y1) in enumerate(workers, 1):
for j in range(1 << m):
for k, (x2, y2) in enumerate(bikes):
if j >> k & 1:
f[i][j] = min(
f[i][j],
f[i - 1][j ^ (1 << k)] + abs(x1 - x2) + abs(y1 - y2),
)
return min(f[n])
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | class Solution {
public int assignBikes(int[][] workers, int[][] bikes) {
int n = workers.length;
int m = bikes.length;
int[][] f = new int[n + 1][1 << m];
for (var g : f) {
Arrays.fill(g, 1 << 30);
}
f[0][0] = 0;
for (int i = 1; i <= n; ++i) {
for (int j = 0; j < 1 << m; ++j) {
for (int k = 0; k < m; ++k) {
if ((j >> k & 1) == 1) {
int d = Math.abs(workers[i - 1][0] - bikes[k][0])
+ Math.abs(workers[i - 1][1] - bikes[k][1]);
f[i][j] = Math.min(f[i][j], f[i - 1][j ^ (1 << k)] + d);
}
}
}
}
return Arrays.stream(f[n]).min().getAsInt();
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | class Solution {
public:
int assignBikes(vector<vector<int>>& workers, vector<vector<int>>& bikes) {
int n = workers.size(), m = bikes.size();
int f[n + 1][1 << m];
memset(f, 0x3f, sizeof(f));
f[0][0] = 0;
for (int i = 1; i <= n; ++i) {
for (int j = 0; j < 1 << m; ++j) {
for (int k = 0; k < m; ++k) {
if (j >> k & 1) {
int d = abs(workers[i - 1][0] - bikes[k][0]) + abs(workers[i - 1][1] - bikes[k][1]);
f[i][j] = min(f[i][j], f[i - 1][j ^ (1 << k)] + d);
}
}
}
}
return *min_element(f[n], f[n] + (1 << m));
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | func assignBikes(workers [][]int, bikes [][]int) int {
n, m := len(workers), len(bikes)
f := make([][]int, n+1)
const inf = 1 << 30
for i := range f {
f[i] = make([]int, 1<<m)
for j := range f[i] {
f[i][j] = inf
}
}
f[0][0] = 0
for i := 1; i <= n; i++ {
for j := 0; j < 1<<m; j++ {
for k := 0; k < m; k++ {
if j>>k&1 == 1 {
d := abs(workers[i-1][0]-bikes[k][0]) + abs(workers[i-1][1]-bikes[k][1])
f[i][j] = min(f[i][j], f[i-1][j^(1<<k)]+d)
}
}
}
}
return slices.Min(f[n])
}
func abs(x int) int {
if x < 0 {
return -x
}
return x
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | function assignBikes(workers: number[][], bikes: number[][]): number {
const n = workers.length;
const m = bikes.length;
const inf = 1 << 30;
const f: number[][] = new Array(n + 1).fill(0).map(() => new Array(1 << m).fill(inf));
f[0][0] = 0;
for (let i = 1; i <= n; ++i) {
for (let j = 0; j < 1 << m; ++j) {
for (let k = 0; k < m; ++k) {
if (((j >> k) & 1) === 1) {
const d =
Math.abs(workers[i - 1][0] - bikes[k][0]) +
Math.abs(workers[i - 1][1] - bikes[k][1]);
f[i][j] = Math.min(f[i][j], f[i - 1][j ^ (1 << k)] + d);
}
}
}
}
return Math.min(...f[n]);
}
|