题目描述
有一个书店老板,他的书店开了 n
分钟。每分钟都有一些顾客进入这家商店。给定一个长度为 n
的整数数组 customers
,其中 customers[i]
是在第 i
分钟开始时进入商店的顾客数量,所有这些顾客在第 i
分钟结束后离开。
在某些分钟内,书店老板会生气。 如果书店老板在第 i
分钟生气,那么 grumpy[i] = 1
,否则 grumpy[i] = 0
。
当书店老板生气时,那一分钟的顾客就会不满意,若老板不生气则顾客是满意的。
书店老板知道一个秘密技巧,能抑制自己的情绪,可以让自己连续 minutes
分钟不生气,但却只能使用一次。
请你返回 这一天营业下来,最多有多少客户能够感到满意 。
示例 1:
输入:customers = [1,0,1,2,1,1,7,5], grumpy = [0,1,0,1,0,1,0,1], minutes = 3
输出:16
解释:书店老板在最后 3 分钟保持冷静。
感到满意的最大客户数量 = 1 + 1 + 1 + 1 + 7 + 5 = 16.
示例 2:
输入:customers = [1], grumpy = [0], minutes = 1
输出:1
提示:
n == customers.length == grumpy.length
1 <= minutes <= n <= 2 * 104
0 <= customers[i] <= 1000
grumpy[i] == 0 or 1
解法
方法一:滑动窗口
根据题目描述,我们只需要统计老板不生气时的客户数量 $tot$,再加上一个大小为 minutes
的滑动窗口中,老板生气时的客户数量的最大值 $mx$ 即可。
我们定义一个变量 $cnt$ 来记录滑动窗口中老板生气时的客户数量,初始值为前 minutes
分钟老板生气时的客户数量。然后我们遍历数组,每次移动滑动窗口时,更新 $cnt$ 的值,同时更新 $mx$ 的值。
最后返回 $tot + mx$ 即可。
时间复杂度 $O(n)$,其中 $n$ 为数组 customers
的长度。空间复杂度 $O(1)$。
| class Solution:
def maxSatisfied(
self, customers: List[int], grumpy: List[int], minutes: int
) -> int:
mx = cnt = sum(c * g for c, g in zip(customers[:minutes], grumpy))
for i in range(minutes, len(customers)):
cnt += customers[i] * grumpy[i]
cnt -= customers[i - minutes] * grumpy[i - minutes]
mx = max(mx, cnt)
return sum(c * (g ^ 1) for c, g in zip(customers, grumpy)) + mx
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | class Solution {
public int maxSatisfied(int[] customers, int[] grumpy, int minutes) {
int cnt = 0;
int tot = 0;
for (int i = 0; i < minutes; ++i) {
cnt += customers[i] * grumpy[i];
tot += customers[i] * (grumpy[i] ^ 1);
}
int mx = cnt;
int n = customers.length;
for (int i = minutes; i < n; ++i) {
cnt += customers[i] * grumpy[i];
cnt -= customers[i - minutes] * grumpy[i - minutes];
mx = Math.max(mx, cnt);
tot += customers[i] * (grumpy[i] ^ 1);
}
return tot + mx;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | class Solution {
public:
int maxSatisfied(vector<int>& customers, vector<int>& grumpy, int minutes) {
int cnt = 0;
int tot = 0;
for (int i = 0; i < minutes; ++i) {
cnt += customers[i] * grumpy[i];
tot += customers[i] * (grumpy[i] ^ 1);
}
int mx = cnt;
int n = customers.size();
for (int i = minutes; i < n; ++i) {
cnt += customers[i] * grumpy[i];
cnt -= customers[i - minutes] * grumpy[i - minutes];
mx = max(mx, cnt);
tot += customers[i] * (grumpy[i] ^ 1);
}
return tot + mx;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | func maxSatisfied(customers []int, grumpy []int, minutes int) int {
var cnt, tot int
for i, c := range customers[:minutes] {
cnt += c * grumpy[i]
tot += c * (grumpy[i] ^ 1)
}
mx := cnt
for i := minutes; i < len(customers); i++ {
cnt += customers[i] * grumpy[i]
cnt -= customers[i-minutes] * grumpy[i-minutes]
mx = max(mx, cnt)
tot += customers[i] * (grumpy[i] ^ 1)
}
return tot + mx
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | function maxSatisfied(customers: number[], grumpy: number[], minutes: number): number {
let [cnt, tot] = [0, 0];
for (let i = 0; i < minutes; ++i) {
cnt += customers[i] * grumpy[i];
tot += customers[i] * (grumpy[i] ^ 1);
}
let mx = cnt;
for (let i = minutes; i < customers.length; ++i) {
cnt += customers[i] * grumpy[i];
cnt -= customers[i - minutes] * grumpy[i - minutes];
mx = Math.max(mx, cnt);
tot += customers[i] * (grumpy[i] ^ 1);
}
return tot + mx;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | impl Solution {
pub fn max_satisfied(customers: Vec<i32>, grumpy: Vec<i32>, minutes: i32) -> i32 {
let mut cnt = 0;
let mut tot = 0;
let minutes = minutes as usize;
for i in 0..minutes {
cnt += customers[i] * grumpy[i];
tot += customers[i] * (1 - grumpy[i]);
}
let mut mx = cnt;
let n = customers.len();
for i in minutes..n {
cnt += customers[i] * grumpy[i];
cnt -= customers[i - minutes] * grumpy[i - minutes];
mx = mx.max(cnt);
tot += customers[i] * (1 - grumpy[i]);
}
tot + mx
}
}
|