数组
哈希表
双指针
字符串
动态规划
排序
题目描述
给出一个单词数组 words
,其中每个单词都由小写英文字母组成。
如果我们可以 不改变其他字符的顺序 ,在 wordA
的任何地方添加 恰好一个 字母使其变成 wordB
,那么我们认为 wordA
是 wordB
的 前身 。
例如,"abc"
是 "abac"
的 前身 ,而 "cba"
不是 "bcad"
的 前身
词链 是单词 [word_1, word_2, ..., word_k]
组成的序列,k >= 1
,其中 word1
是 word2
的前身,word2
是 word3
的前身,依此类推。一个单词通常是 k == 1
的 单词链 。
从给定单词列表 words
中选择单词组成词链,返回 词链的 最长可能长度 。
示例 1:
输入: words = ["a","b","ba","bca","bda","bdca"]
输出: 4
解释: 最长单词链之一为 ["a","b a","bd a","bdc a"]
示例 2:
输入: words = ["xbc","pcxbcf","xb","cxbc","pcxbc"]
输出: 5
解释: 所有的单词都可以放入单词链 ["xb", "xbc ", "c xbc", "p cxbc", "pcxbcf "].
示例 3:
输入: words = ["abcd","dbqca"]
输出: 1
解释: 字链["abcd"]是最长的字链之一。
["abcd","dbqca"]不是一个有效的单词链,因为字母的顺序被改变了。
提示:
1 <= words.length <= 1000
1 <= words[i].length <= 16
words[i]
仅由小写英文字母组成。
解法
方法一
Python3 Java C++ Go TypeScript Rust
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 class Solution :
def longestStrChain ( self , words : List [ str ]) -> int :
def check ( w1 , w2 ):
if len ( w2 ) - len ( w1 ) != 1 :
return False
i = j = cnt = 0
while i < len ( w1 ) and j < len ( w2 ):
if w1 [ i ] != w2 [ j ]:
cnt += 1
else :
i += 1
j += 1
return cnt < 2 and i == len ( w1 )
n = len ( words )
dp = [ 1 ] * ( n + 1 )
words . sort ( key = lambda x : len ( x ))
res = 1
for i in range ( 1 , n ):
for j in range ( i ):
if check ( words [ j ], words [ i ]):
dp [ i ] = max ( dp [ i ], dp [ j ] + 1 )
res = max ( res , dp [ i ])
return res
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 class Solution {
public int longestStrChain ( String [] words ) {
Arrays . sort ( words , Comparator . comparingInt ( String :: length ));
int res = 0 ;
Map < String , Integer > map = new HashMap <> ();
for ( String word : words ) {
int x = 1 ;
for ( int i = 0 ; i < word . length (); ++ i ) {
String pre = word . substring ( 0 , i ) + word . substring ( i + 1 );
x = Math . max ( x , map . getOrDefault ( pre , 0 ) + 1 );
}
map . put ( word , x );
res = Math . max ( res , x );
}
return res ;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 class Solution {
public :
int longestStrChain ( vector < string >& words ) {
sort ( words . begin (), words . end (), [ & ]( string a , string b ) { return a . size () < b . size (); });
int res = 0 ;
unordered_map < string , int > map ;
for ( auto word : words ) {
int x = 1 ;
for ( int i = 0 ; i < word . size (); ++ i ) {
string pre = word . substr ( 0 , i ) + word . substr ( i + 1 );
x = max ( x , map [ pre ] + 1 );
}
map [ word ] = x ;
res = max ( res , x );
}
return res ;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 func longestStrChain ( words [] string ) int {
sort . Slice ( words , func ( i , j int ) bool { return len ( words [ i ]) < len ( words [ j ]) })
res := 0
mp := make ( map [ string ] int )
for _ , word := range words {
x := 1
for i := 0 ; i < len ( word ); i ++ {
pre := word [ 0 : i ] + word [ i + 1 : len ( word )]
x = max ( x , mp [ pre ] + 1 )
}
mp [ word ] = x
res = max ( res , x )
}
return res
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 function longestStrChain ( words : string []) : number {
words . sort (( a , b ) => a . length - b . length );
let ans = 0 ;
let hashTable = new Map ();
for ( let word of words ) {
let c = 1 ;
for ( let i = 0 ; i < word . length ; i ++ ) {
let pre = word . substring ( 0 , i ) + word . substring ( i + 1 );
c = Math . max ( c , ( hashTable . get ( pre ) || 0 ) + 1 );
}
hashTable . set ( word , c );
ans = Math . max ( ans , c );
}
return ans ;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 use std :: collections :: HashMap ;
impl Solution {
#[allow(dead_code)]
pub fn longest_str_chain ( words : Vec < String > ) -> i32 {
let mut words = words ;
let mut ret = 0 ;
let mut map : HashMap < String , i32 > = HashMap :: new ();
// Sort the words vector first
words . sort_by ( | lhs , rhs | lhs . len (). cmp ( & rhs . len ()));
// Begin the "dp" process
for w in words . iter () {
let n = w . len ();
let mut x = 1 ;
for i in 0 .. n {
let s = w [ .. i ]. to_string () + & w [ i + 1 .. ];
let v = map . entry ( s . clone ()). or_default ();
x = std :: cmp :: max ( x , * v + 1 );
}
map . insert ( w . clone (), x );
ret = std :: cmp :: max ( ret , x );
}
ret
}
}
方法二