题目描述
有 n
个花园,按从 1
到 n
标记。另有数组 paths
,其中 paths[i] = [xi, yi]
描述了花园 xi
到花园 yi
的双向路径。在每个花园中,你打算种下四种花之一。
另外,所有花园 最多 有 3 条路径可以进入或离开.
你需要为每个花园选择一种花,使得通过路径相连的任何两个花园中的花的种类互不相同。
以数组形式返回 任一 可行的方案作为答案 answer
,其中 answer[i]
为在第 (i+1)
个花园中种植的花的种类。花的种类用 1、2、3、4 表示。保证存在答案。
示例 1:
输入:n = 3, paths = [[1,2],[2,3],[3,1]]
输出:[1,2,3]
解释:
花园 1 和 2 花的种类不同。
花园 2 和 3 花的种类不同。
花园 3 和 1 花的种类不同。
因此,[1,2,3] 是一个满足题意的答案。其他满足题意的答案有 [1,2,4]、[1,4,2] 和 [3,2,1]
示例 2:
输入:n = 4, paths = [[1,2],[3,4]]
输出:[1,2,1,2]
示例 3:
输入:n = 4, paths = [[1,2],[2,3],[3,4],[4,1],[1,3],[2,4]]
输出:[1,2,3,4]
提示:
1 <= n <= 104
0 <= paths.length <= 2 * 104
paths[i].length == 2
1 <= xi, yi <= n
xi != yi
- 每个花园 最多 有 3 条路径可以进入或离开
解法
方法一:枚举
我们先根据数组 $paths$ 构建图 $g$,其中 $g[x]$ 表示与花园 $x$ 相邻的花园列表。
接下来,对于每个花园 $x$,我们先找出与 $x$ 相邻的花园 $y$,并将 $y$ 花园中种植的花的种类标记为已使用。然后我们从花的种类 $1$ 开始枚举,直到找到一个未被使用的花的种类 $c$,将 $c$ 标记为 $x$ 花园中种植的花的种类,然后继续枚举下一个花园。
枚举结束后,返回答案即可。
时间复杂度 $O(n + m)$,空间复杂度 $O(n + m)$。其中 $n$ 和 $m$ 分别是花园的数量和路径的数量。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | class Solution:
def gardenNoAdj(self, n: int, paths: List[List[int]]) -> List[int]:
g = defaultdict(list)
for x, y in paths:
x, y = x - 1, y - 1
g[x].append(y)
g[y].append(x)
ans = [0] * n
for x in range(n):
used = {ans[y] for y in g[x]}
for c in range(1, 5):
if c not in used:
ans[x] = c
break
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | class Solution {
public int[] gardenNoAdj(int n, int[][] paths) {
List<Integer>[] g = new List[n];
Arrays.setAll(g, k -> new ArrayList<>());
for (var p : paths) {
int x = p[0] - 1, y = p[1] - 1;
g[x].add(y);
g[y].add(x);
}
int[] ans = new int[n];
boolean[] used = new boolean[5];
for (int x = 0; x < n; ++x) {
Arrays.fill(used, false);
for (int y : g[x]) {
used[ans[y]] = true;
}
for (int c = 1; c < 5; ++c) {
if (!used[c]) {
ans[x] = c;
break;
}
}
}
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | class Solution {
public:
vector<int> gardenNoAdj(int n, vector<vector<int>>& paths) {
vector<vector<int>> g(n);
for (auto& p : paths) {
int x = p[0] - 1, y = p[1] - 1;
g[x].push_back(y);
g[y].push_back(x);
}
vector<int> ans(n);
bool used[5];
for (int x = 0; x < n; ++x) {
memset(used, false, sizeof(used));
for (int y : g[x]) {
used[ans[y]] = true;
}
for (int c = 1; c < 5; ++c) {
if (!used[c]) {
ans[x] = c;
break;
}
}
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | func gardenNoAdj(n int, paths [][]int) []int {
g := make([][]int, n)
for _, p := range paths {
x, y := p[0]-1, p[1]-1
g[x] = append(g[x], y)
g[y] = append(g[y], x)
}
ans := make([]int, n)
for x := 0; x < n; x++ {
used := [5]bool{}
for _, y := range g[x] {
used[ans[y]] = true
}
for c := 1; c < 5; c++ {
if !used[c] {
ans[x] = c
break
}
}
}
return ans
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | function gardenNoAdj(n: number, paths: number[][]): number[] {
const g: number[][] = new Array(n).fill(0).map(() => []);
for (const [x, y] of paths) {
g[x - 1].push(y - 1);
g[y - 1].push(x - 1);
}
const ans: number[] = new Array(n).fill(0);
for (let x = 0; x < n; ++x) {
const used: boolean[] = new Array(5).fill(false);
for (const y of g[x]) {
used[ans[y]] = true;
}
for (let c = 1; c < 5; ++c) {
if (!used[c]) {
ans[x] = c;
break;
}
}
}
return ans;
}
|