树
深度优先搜索
广度优先搜索
二叉树
题目描述
给定一个二叉树 root
,返回其最大深度。
二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。
示例 1:
输入: root = [3,9,20,null,null,15,7]
输出: 3
示例 2:
输入: root = [1,null,2]
输出: 2
提示:
树中节点的数量在 [0, 104 ]
区间内。
-100 <= Node.val <= 100
解法
方法一:递归
递归遍历左右子树,求左右子树的最大深度,然后取最大值加 $1$ 即可。
时间复杂度 $O(n)$,其中 $n$ 是二叉树的节点数。每个节点在递归中只被遍历一次。
Python3 Java C++ Go TypeScript Rust JavaScript C
1
2
3
4
5
6
7
8
9
10
11
12 # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution :
def maxDepth ( self , root : TreeNode ) -> int :
if root is None :
return 0
l , r = self . maxDepth ( root . left ), self . maxDepth ( root . right )
return 1 + max ( l , r )
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int maxDepth ( TreeNode root ) {
if ( root == null ) {
return 0 ;
}
int l = maxDepth ( root . left );
int r = maxDepth ( root . right );
return 1 + Math . max ( l , r );
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public :
int maxDepth ( TreeNode * root ) {
if ( ! root ) return 0 ;
int l = maxDepth ( root -> left ), r = maxDepth ( root -> right );
return 1 + max ( l , r );
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 /**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func maxDepth ( root * TreeNode ) int {
if root == nil {
return 0
}
l , r := maxDepth ( root . Left ), maxDepth ( root . Right )
return 1 + max ( l , r )
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 /**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function maxDepth ( root : TreeNode | null ) : number {
if ( root === null ) {
return 0 ;
}
return 1 + Math . max ( maxDepth ( root . left ), maxDepth ( root . right ));
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33 // Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std :: cell :: RefCell ;
use std :: rc :: Rc ;
impl Solution {
fn dfs ( root : & Option < Rc < RefCell < TreeNode >>> ) -> i32 {
if root . is_none () {
return 0 ;
}
let node = root . as_ref (). unwrap (). borrow ();
1 + Self :: dfs ( & node . left ). max ( Self :: dfs ( & node . right ))
}
pub fn max_depth ( root : Option < Rc < RefCell < TreeNode >>> ) -> i32 {
Self :: dfs ( & root )
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 /**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {number}
*/
var maxDepth = function ( root ) {
if ( ! root ) return 0 ;
const l = maxDepth ( root . left );
const r = maxDepth ( root . right );
return 1 + Math . max ( l , r );
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* struct TreeNode *left;
* struct TreeNode *right;
* };
*/
#define max(a, b) (((a) > (b)) ? (a) : (b))
int maxDepth ( struct TreeNode * root ) {
if ( ! root ) {
return 0 ;
}
int left = maxDepth ( root -> left );
int right = maxDepth ( root -> right );
return 1 + max ( left , right );
}