题目描述
给定一个数组 points
,其中 points[i] = [xi, yi]
表示 X-Y 平面上的一个点,如果这些点构成一个 回旋镖 则返回 true
。
回旋镖 定义为一组三个点,这些点 各不相同 且 不在一条直线上 。
示例 1:
输入:points = [[1,1],[2,3],[3,2]]
输出:true
示例 2:
输入:points = [[1,1],[2,2],[3,3]]
输出:false
提示:
points.length == 3
points[i].length == 2
0 <= xi, yi <= 100
解法
方法一:斜率比较
设三点分别为 $(x_1,y_1)$, $(x_2,y_2)$, $(x_3,y_3)$。两点之间斜率计算公式为 $\frac{y_2-y_1}{x_2-x_1}$。
要使得三点不共线,需要满足 $\frac{y_2-y_1}{x_2-x_1}\neq\frac{y_3-y_2}{x_3-x_2}$,我们将式子变形得到 $(y_2-y_1)(x_3-x_2) \neq (y_3-y_2)(x_2-x_1)$。
注意:
- 当两点之间斜率不存在,即 $x_1=x_2$,上述变式仍然成立;
- 若斜率除法运算比较存在精度问题,同样可以变换为乘法。
时间复杂度 $O(1)$。
| class Solution:
def isBoomerang(self, points: List[List[int]]) -> bool:
(x1, y1), (x2, y2), (x3, y3) = points
return (y2 - y1) * (x3 - x2) != (y3 - y2) * (x2 - x1)
|
| class Solution {
public boolean isBoomerang(int[][] points) {
int x1 = points[0][0], y1 = points[0][1];
int x2 = points[1][0], y2 = points[1][1];
int x3 = points[2][0], y3 = points[2][1];
return (y2 - y1) * (x3 - x2) != (y3 - y2) * (x2 - x1);
}
}
|
| class Solution {
public:
bool isBoomerang(vector<vector<int>>& points) {
int x1 = points[0][0], y1 = points[0][1];
int x2 = points[1][0], y2 = points[1][1];
int x3 = points[2][0], y3 = points[2][1];
return (y2 - y1) * (x3 - x2) != (y3 - y2) * (x2 - x1);
}
};
|
| func isBoomerang(points [][]int) bool {
x1, y1 := points[0][0], points[0][1]
x2, y2 := points[1][0], points[1][1]
x3, y3 := points[2][0], points[2][1]
return (y2-y1)*(x3-x2) != (y3-y2)*(x2-x1)
}
|
| function isBoomerang(points: number[][]): boolean {
const [x1, y1] = points[0];
const [x2, y2] = points[1];
const [x3, y3] = points[2];
return (x1 - x2) * (y2 - y3) !== (x2 - x3) * (y1 - y2);
}
|
| impl Solution {
pub fn is_boomerang(points: Vec<Vec<i32>>) -> bool {
let (x1, y1) = (points[0][0], points[0][1]);
let (x2, y2) = (points[1][0], points[1][1]);
let (x3, y3) = (points[2][0], points[2][1]);
(x1 - x2) * (y2 - y3) != (x2 - x3) * (y1 - y2)
}
}
|