题目描述
给你一个大小为 m x n
的整数矩阵 grid
,表示一个网格。另给你三个整数 row
、col
和 color
。网格中的每个值表示该位置处的网格块的颜色。
如果两个方块在任意 4 个方向上相邻,则称它们 相邻 。
如果两个方块具有相同的颜色且相邻,它们则属于同一个 连通分量 。
连通分量的边界 是指连通分量中满足下述条件之一的所有网格块:
- 在上、下、左、右任意一个方向上与不属于同一连通分量的网格块相邻
- 在网格的边界上(第一行/列或最后一行/列)
请你使用指定颜色 color
为所有包含网格块 grid[row][col]
的 连通分量的边界 进行着色。
并返回最终的网格 grid
。
示例 1:
输入:grid = [[1,1],[1,2]], row = 0, col = 0, color = 3
输出:[[3,3],[3,2]]
示例 2:
输入:grid = [[1,2,2],[2,3,2]], row = 0, col = 1, color = 3
输出:[[1,3,3],[2,3,3]]
示例 3:
输入:grid = [[1,1,1],[1,1,1],[1,1,1]], row = 1, col = 1, color = 2
输出:[[2,2,2],[2,1,2],[2,2,2]]
提示:
m == grid.length
n == grid[i].length
1 <= m, n <= 50
1 <= grid[i][j], color <= 1000
0 <= row < m
0 <= col < n
解法
方法一:DFS
我们从位置 $(row, col)$ 出发,利用 DFS 搜索所有颜色为 $grid[row][col]$ 的网格块,如果该网格块的某个相邻位置的颜色不为 $grid[row][col]$,或者该网格块在网格的边界上,则将该网格块的颜色改为 $color$。
时间复杂度 $O(m \times n)$,空间复杂度 $O(m \times n)$。其中 $m$ 和 $n$ 分别是网格的行数和列数。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | class Solution:
def colorBorder(
self, grid: List[List[int]], row: int, col: int, color: int
) -> List[List[int]]:
def dfs(i: int, j: int, c: int) -> None:
vis[i][j] = True
for a, b in pairwise((-1, 0, 1, 0, -1)):
x, y = i + a, j + b
if 0 <= x < m and 0 <= y < n:
if not vis[x][y]:
if grid[x][y] == c:
dfs(x, y, c)
else:
grid[i][j] = color
else:
grid[i][j] = color
m, n = len(grid), len(grid[0])
vis = [[False] * n for _ in range(m)]
dfs(row, col, grid[row][col])
return grid
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36 | class Solution {
private int[][] grid;
private int color;
private int m;
private int n;
private boolean[][] vis;
public int[][] colorBorder(int[][] grid, int row, int col, int color) {
this.grid = grid;
this.color = color;
m = grid.length;
n = grid[0].length;
vis = new boolean[m][n];
dfs(row, col, grid[row][col]);
return grid;
}
private void dfs(int i, int j, int c) {
vis[i][j] = true;
int[] dirs = {-1, 0, 1, 0, -1};
for (int k = 0; k < 4; ++k) {
int x = i + dirs[k], y = j + dirs[k + 1];
if (x >= 0 && x < m && y >= 0 && y < n) {
if (!vis[x][y]) {
if (grid[x][y] == c) {
dfs(x, y, c);
} else {
grid[i][j] = color;
}
}
} else {
grid[i][j] = color;
}
}
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | class Solution {
public:
vector<vector<int>> colorBorder(vector<vector<int>>& grid, int row, int col, int color) {
int m = grid.size();
int n = grid[0].size();
bool vis[m][n];
memset(vis, false, sizeof(vis));
int dirs[5] = {-1, 0, 1, 0, -1};
function<void(int, int, int)> dfs = [&](int i, int j, int c) {
vis[i][j] = true;
for (int k = 0; k < 4; ++k) {
int x = i + dirs[k];
int y = j + dirs[k + 1];
if (x >= 0 && x < m && y >= 0 && y < n) {
if (!vis[x][y]) {
if (grid[x][y] == c) {
dfs(x, y, c);
} else {
grid[i][j] = color;
}
}
} else {
grid[i][j] = color;
}
}
};
dfs(row, col, grid[row][col]);
return grid;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | func colorBorder(grid [][]int, row int, col int, color int) [][]int {
m, n := len(grid), len(grid[0])
vis := make([][]bool, m)
for i := range vis {
vis[i] = make([]bool, n)
}
dirs := [5]int{-1, 0, 1, 0, -1}
var dfs func(int, int, int)
dfs = func(i, j, c int) {
vis[i][j] = true
for k := 0; k < 4; k++ {
x, y := i+dirs[k], j+dirs[k+1]
if x >= 0 && x < m && y >= 0 && y < n {
if !vis[x][y] {
if grid[x][y] == c {
dfs(x, y, c)
} else {
grid[i][j] = color
}
}
} else {
grid[i][j] = color
}
}
}
dfs(row, col, grid[row][col])
return grid
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | function colorBorder(grid: number[][], row: number, col: number, color: number): number[][] {
const m = grid.length;
const n = grid[0].length;
const vis = new Array(m).fill(0).map(() => new Array(n).fill(false));
const dirs = [-1, 0, 1, 0, -1];
const dfs = (i: number, j: number, c: number) => {
vis[i][j] = true;
for (let k = 0; k < 4; ++k) {
const x = i + dirs[k];
const y = j + dirs[k + 1];
if (x >= 0 && x < m && y >= 0 && y < n) {
if (!vis[x][y]) {
if (grid[x][y] == c) {
dfs(x, y, c);
} else {
grid[i][j] = color;
}
}
} else {
grid[i][j] = color;
}
}
};
dfs(row, col, grid[row][col]);
return grid;
}
|