题目描述
给你一个整数数组 nums
和两个整数 firstLen
和 secondLen
,请你找出并返回两个非重叠 子数组 中元素的最大和,长度分别为 firstLen
和 secondLen
。
长度为 firstLen
的子数组可以出现在长为 secondLen
的子数组之前或之后,但二者必须是不重叠的。
子数组是数组的一个 连续 部分。
示例 1:
输入:nums = [0,6,5,2,2,5,1,9,4], firstLen = 1, secondLen = 2
输出:20
解释:子数组的一种选择中,[9] 长度为 1,[6,5] 长度为 2。
示例 2:
输入:nums = [3,8,1,3,2,1,8,9,0], firstLen = 3, secondLen = 2
输出:29
解释:子数组的一种选择中,[3,8,1] 长度为 3,[8,9] 长度为 2。
示例 3:
输入:nums = [2,1,5,6,0,9,5,0,3,8], firstLen = 4, secondLen = 3
输出:31
解释:子数组的一种选择中,[5,6,0,9] 长度为 4,[0,3,8] 长度为 3。
提示:
1 <= firstLen, secondLen <= 1000
2 <= firstLen + secondLen <= 1000
firstLen + secondLen <= nums.length <= 1000
0 <= nums[i] <= 1000
解法
方法一:前缀和 + 枚举
我们先预处理得到数组 nums
的前缀和数组 $s$,其中 $s[i]$ 表示 $nums$ 中前 $i$ 个元素的和。
接下来,我们分两种情况枚举:
假设 $firstLen$ 个元素的子数组在 $secondLen$ 个元素的子数组的左边,那么我们可以枚举 $secondLen$ 个元素的子数组的左端点 $i$,用变量 $t$ 维护左边 $firstLen$ 个元素的子数组的最大和,那么答案就是 $t + s[i + secondLen] - s[i]$。枚举完所有的 $i$,就可以得到候选答案。
假设 $secondLen$ 个元素的子数组在 $firstLen$ 个元素的子数组的左边,那么我们可以枚举 $firstLen$ 个元素的子数组的左端点 $i$,用变量 $t$ 维护左边 $secondLen$ 个元素的子数组的最大和,那么答案就是 $t + s[i + firstLen] - s[i]$。枚举完所有的 $i$,就可以得到候选答案。
最后,我们取两种情况下的候选答案的最大值即可。
时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为数组 nums
的长度。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 | class Solution:
def maxSumTwoNoOverlap(self, nums: List[int], firstLen: int, secondLen: int) -> int:
n = len(nums)
s = list(accumulate(nums, initial=0))
ans = t = 0
i = firstLen
while i + secondLen - 1 < n:
t = max(t, s[i] - s[i - firstLen])
ans = max(ans, t + s[i + secondLen] - s[i])
i += 1
t = 0
i = secondLen
while i + firstLen - 1 < n:
t = max(t, s[i] - s[i - secondLen])
ans = max(ans, t + s[i + firstLen] - s[i])
i += 1
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | class Solution {
public int maxSumTwoNoOverlap(int[] nums, int firstLen, int secondLen) {
int n = nums.length;
int[] s = new int[n + 1];
for (int i = 0; i < n; ++i) {
s[i + 1] = s[i] + nums[i];
}
int ans = 0;
for (int i = firstLen, t = 0; i + secondLen - 1 < n; ++i) {
t = Math.max(t, s[i] - s[i - firstLen]);
ans = Math.max(ans, t + s[i + secondLen] - s[i]);
}
for (int i = secondLen, t = 0; i + firstLen - 1 < n; ++i) {
t = Math.max(t, s[i] - s[i - secondLen]);
ans = Math.max(ans, t + s[i + firstLen] - s[i]);
}
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | class Solution {
public:
int maxSumTwoNoOverlap(vector<int>& nums, int firstLen, int secondLen) {
int n = nums.size();
vector<int> s(n + 1);
for (int i = 0; i < n; ++i) {
s[i + 1] = s[i] + nums[i];
}
int ans = 0;
for (int i = firstLen, t = 0; i + secondLen - 1 < n; ++i) {
t = max(t, s[i] - s[i - firstLen]);
ans = max(ans, t + s[i + secondLen] - s[i]);
}
for (int i = secondLen, t = 0; i + firstLen - 1 < n; ++i) {
t = max(t, s[i] - s[i - secondLen]);
ans = max(ans, t + s[i + firstLen] - s[i]);
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 | func maxSumTwoNoOverlap(nums []int, firstLen int, secondLen int) (ans int) {
n := len(nums)
s := make([]int, n+1)
for i, x := range nums {
s[i+1] = s[i] + x
}
for i, t := firstLen, 0; i+secondLen-1 < n; i++ {
t = max(t, s[i]-s[i-firstLen])
ans = max(ans, t+s[i+secondLen]-s[i])
}
for i, t := secondLen, 0; i+firstLen-1 < n; i++ {
t = max(t, s[i]-s[i-secondLen])
ans = max(ans, t+s[i+firstLen]-s[i])
}
return
}
|