树
深度优先搜索
二叉树
题目描述
给定二叉树的根节点 root
,找出存在于 不同 节点 A
和 B
之间的最大值 V
,其中 V = |A.val - B.val|
,且 A
是 B
的祖先。
(如果 A 的任何子节点之一为 B,或者 A 的任何子节点是 B 的祖先,那么我们认为 A 是 B 的祖先)
示例 1:
输入: root = [8,3,10,1,6,null,14,null,null,4,7,13]
输出: 7
解释:
我们有大量的节点与其祖先的差值,其中一些如下:
|8 - 3| = 5
|3 - 7| = 4
|8 - 1| = 7
|10 - 13| = 3
在所有可能的差值中,最大值 7 由 |8 - 1| = 7 得出。
示例 2:
输入: root = [1,null,2,null,0,3]
输出: 3
提示:
树中的节点数在 2
到 5000
之间。
0 <= Node.val <= 105
解法
方法一:DFS
对于每个节点,求其与祖先节点的最大差值,我们只需要求出该节点与祖先节点最大值和最小值的差值。取所有节点与祖先节点差值的最大值即可。
因此,我们设计一个函数 $dfs(root, mi, mx)$,表示当前搜索到的节点为 $root$,其祖先节点的最大值为 $mx$,最小值为 $mi$,函数内更新最大差值 $ans$。
函数 $dfs(root, mi, mx)$ 的逻辑如下:
若 $root$ 为空,直接返回。
否则,我们更新 $ans = max(ans, |mi - root.val|, |mx - root.val|)$。
然后更新 $mi = min(mi, root.val)$, $mx = max(mx, root.val)$,并且递归搜索左右子树。
在主函数中,我们调用 $dfs(root, root.val, root.val)$,最后返回 $ans$ 即可。
时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为二叉树节点个数。
Python3 Java C++ Go TypeScript JavaScript C#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution :
def maxAncestorDiff ( self , root : Optional [ TreeNode ]) -> int :
def dfs ( root : Optional [ TreeNode ], mi : int , mx : int ):
if root is None :
return
nonlocal ans
ans = max ( ans , abs ( mi - root . val ), abs ( mx - root . val ))
mi = min ( mi , root . val )
mx = max ( mx , root . val )
dfs ( root . left , mi , mx )
dfs ( root . right , mi , mx )
ans = 0
dfs ( root , root . val , root . val )
return ans
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35 /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private int ans ;
public int maxAncestorDiff ( TreeNode root ) {
dfs ( root , root . val , root . val );
return ans ;
}
private void dfs ( TreeNode root , int mi , int mx ) {
if ( root == null ) {
return ;
}
int x = Math . max ( Math . abs ( mi - root . val ), Math . abs ( mx - root . val ));
ans = Math . max ( ans , x );
mi = Math . min ( mi , root . val );
mx = Math . max ( mx , root . val );
dfs ( root . left , mi , mx );
dfs ( root . right , mi , mx );
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public :
int maxAncestorDiff ( TreeNode * root ) {
int ans = 0 ;
function < void ( TreeNode * , int , int ) > dfs = [ & ]( TreeNode * root , int mi , int mx ) {
if ( ! root ) {
return ;
}
ans = max ({ ans , abs ( mi - root -> val ), abs ( mx - root -> val )});
mi = min ( mi , root -> val );
mx = max ( mx , root -> val );
dfs ( root -> left , mi , mx );
dfs ( root -> right , mi , mx );
};
dfs ( root , root -> val , root -> val );
return ans ;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 /**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func maxAncestorDiff ( root * TreeNode ) ( ans int ) {
var dfs func ( * TreeNode , int , int )
dfs = func ( root * TreeNode , mi , mx int ) {
if root == nil {
return
}
ans = max ( ans , max ( abs ( mi - root . Val ), abs ( mx - root . Val )))
mi = min ( mi , root . Val )
mx = max ( mx , root . Val )
dfs ( root . Left , mi , mx )
dfs ( root . Right , mi , mx )
}
dfs ( root , root . Val , root . Val )
return
}
func abs ( x int ) int {
if x < 0 {
return - x
}
return x
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 /**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function maxAncestorDiff ( root : TreeNode | null ) : number {
const dfs = ( root : TreeNode | null , mi : number , mx : number ) : void => {
if ( ! root ) {
return ;
}
ans = Math . max ( ans , Math . abs ( root . val - mi ), Math . abs ( root . val - mx ));
mi = Math . min ( mi , root . val );
mx = Math . max ( mx , root . val );
dfs ( root . left , mi , mx );
dfs ( root . right , mi , mx );
};
let ans : number = 0 ;
dfs ( root , root . val , root . val );
return ans ;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 /**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {number}
*/
var maxAncestorDiff = function ( root ) {
let ans = 0 ;
const dfs = ( root , mi , mx ) => {
if ( ! root ) {
return ;
}
ans = Math . max ( ans , Math . abs ( mi - root . val ), Math . abs ( mx - root . val ));
mi = Math . min ( mi , root . val );
mx = Math . max ( mx , root . val );
dfs ( root . left , mi , mx );
dfs ( root . right , mi , mx );
};
dfs ( root , root . val , root . val );
return ans ;
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33 /**
* Definition for a binary tree node.
* public class TreeNode {
* public int val;
* public TreeNode left;
* public TreeNode right;
* public TreeNode(int val=0, TreeNode left=null, TreeNode right=null) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
public class Solution {
private int ans ;
public int MaxAncestorDiff ( TreeNode root ) {
dfs ( root , root . val , root . val );
return ans ;
}
private void dfs ( TreeNode root , int mi , int mx ) {
if ( root == null ) {
return ;
}
int x = Math . Max ( Math . Abs ( mi - root . val ), Math . Abs ( mx - root . val ));
ans = Math . Max ( ans , x );
mi = Math . Min ( mi , root . val );
mx = Math . Max ( mx , root . val );
dfs ( root . left , mi , mx );
dfs ( root . right , mi , mx );
}
}
GitHub