树
深度优先搜索
广度优先搜索
二叉树
题目描述
给你一个二叉树的根节点 root
, 检查它是否轴对称。
示例 1:
输入: root = [1,2,2,3,4,4,3]
输出: true
示例 2:
输入: root = [1,2,2,null,3,null,3]
输出: false
提示:
树中节点数目在范围 [1, 1000]
内
-100 <= Node.val <= 100
进阶: 你可以运用递归和迭代两种方法解决这个问题吗?
解法
方法一:递归
我们设计一个函数 $\textit{dfs}(\textit{root1}, \textit{root2})$,用于判断两个二叉树是否对称。答案即为 $\textit{dfs}(\textit{root.left}, \textit{root.right})$。
函数 $\textit{dfs}(\textit{root1}, \textit{root2})$ 的逻辑如下:
如果 $\textit{root1}$ 和 $\textit{root2}$ 都为空,则两个二叉树对称,返回 true
;
如果 $\textit{root1}$ 和 $\textit{root2}$ 中只有一个为空,或者 $\textit{root1.val} \neq \textit{root2.val}$
否则,判断 $\textit{root1}$ 的左子树和 $\textit{root2}$ 的右子树是否对称,以及 $\textit{root1}$ 的右子树和 $\textit{root2}$ 的左子树是否对称,这里使用了递归。
时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是二叉树的节点数。
Python3 Java C++ Go TypeScript Rust JavaScript
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution :
def isSymmetric ( self , root : Optional [ TreeNode ]) -> bool :
def dfs ( root1 : Optional [ TreeNode ], root2 : Optional [ TreeNode ]) -> bool :
if root1 == root2 :
return True
if root1 is None or root2 is None or root1 . val != root2 . val :
return False
return dfs ( root1 . left , root2 . right ) and dfs ( root1 . right , root2 . left )
return dfs ( root . left , root . right )
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean isSymmetric ( TreeNode root ) {
return dfs ( root . left , root . right );
}
private boolean dfs ( TreeNode root1 , TreeNode root2 ) {
if ( root1 == root2 ) {
return true ;
}
if ( root1 == null || root2 == null || root1 . val != root2 . val ) {
return false ;
}
return dfs ( root1 . left , root2 . right ) && dfs ( root1 . right , root2 . left );
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public :
bool isSymmetric ( TreeNode * root ) {
auto dfs = [ & ]( this auto && dfs , TreeNode * root1 , TreeNode * root2 ) -> bool {
if ( root1 == root2 ) {
return true ;
}
if ( ! root1 || ! root2 || root1 -> val != root2 -> val ) {
return false ;
}
return dfs ( root1 -> left , root2 -> right ) && dfs ( root1 -> right , root2 -> left );
};
return dfs ( root -> left , root -> right );
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 /**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func isSymmetric ( root * TreeNode ) bool {
var dfs func ( root1 , root2 * TreeNode ) bool
dfs = func ( root1 , root2 * TreeNode ) bool {
if root1 == root2 {
return true
}
if root1 == nil || root2 == nil || root1 . Val != root2 . Val {
return false
}
return dfs ( root1 . Left , root2 . Right ) && dfs ( root1 . Right , root2 . Left )
}
return dfs ( root . Left , root . Right )
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 /**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function isSymmetric ( root : TreeNode | null ) : boolean {
const dfs = ( root1 : TreeNode | null , root2 : TreeNode | null ) : boolean => {
if ( root1 === root2 ) {
return true ;
}
if ( ! root1 || ! root2 || root1 . val !== root2 . val ) {
return false ;
}
return dfs ( root1 . left , root2 . right ) && dfs ( root1 . right , root2 . left );
};
return dfs ( root . left , root . right );
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42 // Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std :: cell :: RefCell ;
use std :: rc :: Rc ;
impl Solution {
pub fn is_symmetric ( root : Option < Rc < RefCell < TreeNode >>> ) -> bool {
fn dfs ( root1 : Option < Rc < RefCell < TreeNode >>> , root2 : Option < Rc < RefCell < TreeNode >>> ) -> bool {
match ( root1 , root2 ) {
( Some ( node1 ), Some ( node2 )) => {
let node1 = node1 . borrow ();
let node2 = node2 . borrow ();
node1 . val == node2 . val
&& dfs ( node1 . left . clone (), node2 . right . clone ())
&& dfs ( node1 . right . clone (), node2 . left . clone ())
}
( None , None ) => true ,
_ => false ,
}
}
match root {
Some ( root ) => dfs ( root . borrow (). left . clone (), root . borrow (). right . clone ()),
None => true ,
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 /**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {boolean}
*/
var isSymmetric = function ( root ) {
const dfs = ( root1 , root2 ) => {
if ( root1 === root2 ) {
return true ;
}
if ( ! root1 || ! root2 || root1 . val !== root2 . val ) {
return false ;
}
return dfs ( root1 . left , root2 . right ) && dfs ( root1 . right , root2 . left );
};
return dfs ( root . left , root . right );
};