栈
树
二叉搜索树
数组
二叉树
单调栈
题目描述
给定一个整数数组,它表示BST(即 二叉搜索树 )的 先 序遍历 ,构造树并返回其根。
保证 对于给定的测试用例,总是有可能找到具有给定需求的二叉搜索树。
二叉搜索树 是一棵二叉树,其中每个节点, Node.left
的任何后代的值 严格小于 Node.val
, Node.right
的任何后代的值 严格大于 Node.val
。
二叉树的 前序遍历 首先显示节点的值,然后遍历Node.left
,最后遍历Node.right
。
示例 1:
输入: preorder = [8,5,1,7,10,12]
输出: [8,5,10,1,7,null,12]
示例 2:
输入: preorder = [1,3]
输出: [1,null,3]
提示:
1 <= preorder.length <= 100
1 <= preorder[i] <= 10^8
preorder
中的值 互不相同
解法
方法一
Python3 Java C++ Go TypeScript Rust
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution :
def bstFromPreorder ( self , preorder : List [ int ]) -> Optional [ TreeNode ]:
def dfs ( preorder ):
if not preorder :
return None
root = TreeNode ( preorder [ 0 ])
left , right = 1 , len ( preorder )
while left < right :
mid = ( left + right ) >> 1
if preorder [ mid ] > preorder [ 0 ]:
right = mid
else :
left = mid + 1
root . left = dfs ( preorder [ 1 : left ])
root . right = dfs ( preorder [ left :])
return root
return dfs ( preorder )
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40 /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public TreeNode bstFromPreorder ( int [] preorder ) {
return dfs ( preorder , 0 , preorder . length - 1 );
}
private TreeNode dfs ( int [] preorder , int i , int j ) {
if ( i > j || i >= preorder . length ) {
return null ;
}
TreeNode root = new TreeNode ( preorder [ i ] );
int left = i + 1 , right = j + 1 ;
while ( left < right ) {
int mid = ( left + right ) >> 1 ;
if ( preorder [ mid ] > preorder [ i ] ) {
right = mid ;
} else {
left = mid + 1 ;
}
}
root . left = dfs ( preorder , i + 1 , left - 1 );
root . right = dfs ( preorder , left , j );
return root ;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public :
TreeNode * bstFromPreorder ( vector < int >& preorder ) {
return dfs ( preorder , 0 , preorder . size () - 1 );
}
TreeNode * dfs ( vector < int >& preorder , int i , int j ) {
if ( i > j || i >= preorder . size ()) return nullptr ;
TreeNode * root = new TreeNode ( preorder [ i ]);
int left = i + 1 , right = j + 1 ;
while ( left < right ) {
int mid = ( left + right ) >> 1 ;
if ( preorder [ mid ] > preorder [ i ])
right = mid ;
else
left = mid + 1 ;
}
root -> left = dfs ( preorder , i + 1 , left - 1 );
root -> right = dfs ( preorder , left , j );
return root ;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 /**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func bstFromPreorder ( preorder [] int ) * TreeNode {
var dfs func ( i , j int ) * TreeNode
dfs = func ( i , j int ) * TreeNode {
if i > j || i >= len ( preorder ) {
return nil
}
root := & TreeNode { Val : preorder [ i ]}
left , right := i + 1 , len ( preorder )
for left < right {
mid := ( left + right ) >> 1
if preorder [ mid ] > preorder [ i ] {
right = mid
} else {
left = mid + 1
}
}
root . Left = dfs ( i + 1 , left - 1 )
root . Right = dfs ( left , j )
return root
}
return dfs ( 0 , len ( preorder ) - 1 )
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34 /**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function bstFromPreorder ( preorder : number []) : TreeNode | null {
const n = preorder . length ;
const next = new Array ( n );
const stack = [];
for ( let i = n - 1 ; i >= 0 ; i -- ) {
while ( stack . length !== 0 && preorder [ stack [ stack . length - 1 ]] < preorder [ i ]) {
stack . pop ();
}
next [ i ] = stack [ stack . length - 1 ] ?? n ;
stack . push ( i );
}
const dfs = ( left : number , right : number ) => {
if ( left >= right ) {
return null ;
}
return new TreeNode ( preorder [ left ], dfs ( left + 1 , next [ left ]), dfs ( next [ left ], right ));
};
return dfs ( 0 , n );
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53 // Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std :: cell :: RefCell ;
use std :: rc :: Rc ;
impl Solution {
fn dfs (
preorder : & Vec < i32 > ,
next : & Vec < usize > ,
left : usize ,
right : usize ,
) -> Option < Rc < RefCell < TreeNode >>> {
if left >= right {
return None ;
}
Some ( Rc :: new ( RefCell :: new ( TreeNode {
val : preorder [ left ],
left : Self :: dfs ( preorder , next , left + 1 , next [ left ]),
right : Self :: dfs ( preorder , next , next [ left ], right ),
})))
}
pub fn bst_from_preorder ( preorder : Vec < i32 > ) -> Option < Rc < RefCell < TreeNode >>> {
let n = preorder . len ();
let mut stack = Vec :: new ();
let mut next = vec! [ n ; n ];
for i in ( 0 .. n ). rev () {
while ! stack . is_empty () && preorder [ * stack . last (). unwrap ()] < preorder [ i ] {
stack . pop ();
}
if ! stack . is_empty () {
next [ i ] = * stack . last (). unwrap ();
}
stack . push ( i );
}
Self :: dfs ( & preorder , & next , 0 , n )
}
}