Skip to content

3264. Final Array State After K Multiplication Operations I

Description

You are given an integer array nums, an integer k, and an integer multiplier.

You need to perform k operations on nums. In each operation:

  • Find the minimum value x in nums. If there are multiple occurrences of the minimum value, select the one that appears first.
  • Replace the selected minimum value x with x * multiplier.

Return an integer array denoting the final state of nums after performing all k operations.

 

Example 1:

Input: nums = [2,1,3,5,6], k = 5, multiplier = 2

Output: [8,4,6,5,6]

Explanation:

Operation Result
After operation 1 [2, 2, 3, 5, 6]
After operation 2 [4, 2, 3, 5, 6]
After operation 3 [4, 4, 3, 5, 6]
After operation 4 [4, 4, 6, 5, 6]
After operation 5 [8, 4, 6, 5, 6]

Example 2:

Input: nums = [1,2], k = 3, multiplier = 4

Output: [16,8]

Explanation:

Operation Result
After operation 1 [4, 2]
After operation 2 [4, 8]
After operation 3 [16, 8]

 

Constraints:

  • 1 <= nums.length <= 100
  • 1 <= nums[i] <= 100
  • 1 <= k <= 10
  • 1 <= multiplier <= 5

Solutions

Solution 1: Priority Queue (Min-Heap) + Simulation

We can use a min-heap to maintain the elements in the array $\textit{nums}$. Each time, we extract the minimum value from the min-heap, multiply it by $\textit{multiplier}$, and then put it back into the min-heap. During the implementation, we insert the indices of the elements into the min-heap and define a custom comparator function to sort the min-heap based on the values of the elements in $\textit{nums}$ as the primary key and the indices as the secondary key.

Finally, we return the array $\textit{nums}$.

The time complexity is $O((n + k) \times \log n)$, and the space complexity is $O(n)$. Here, $n$ is the length of the array $\textit{nums}$.

1
2
3
4
5
6
7
8
9
class Solution:
    def getFinalState(self, nums: List[int], k: int, multiplier: int) -> List[int]:
        pq = [(x, i) for i, x in enumerate(nums)]
        heapify(pq)
        for _ in range(k):
            _, i = heappop(pq)
            nums[i] *= multiplier
            heappush(pq, (nums[i], i))
        return nums
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
class Solution {
    public int[] getFinalState(int[] nums, int k, int multiplier) {
        PriorityQueue<Integer> pq
            = new PriorityQueue<>((i, j) -> nums[i] - nums[j] == 0 ? i - j : nums[i] - nums[j]);
        for (int i = 0; i < nums.length; i++) {
            pq.offer(i);
        }
        while (k-- > 0) {
            int i = pq.poll();
            nums[i] *= multiplier;
            pq.offer(i);
        }
        return nums;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
class Solution {
public:
    vector<int> getFinalState(vector<int>& nums, int k, int multiplier) {
        auto cmp = [&nums](int i, int j) {
            return nums[i] == nums[j] ? i > j : nums[i] > nums[j];
        };
        priority_queue<int, vector<int>, decltype(cmp)> pq(cmp);

        for (int i = 0; i < nums.size(); ++i) {
            pq.push(i);
        }

        while (k--) {
            int i = pq.top();
            pq.pop();
            nums[i] *= multiplier;
            pq.push(i);
        }

        return nums;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
func getFinalState(nums []int, k int, multiplier int) []int {
    h := &hp{nums: nums}
    for i := range nums {
        heap.Push(h, i)
    }

    for k > 0 {
        i := heap.Pop(h).(int)
        nums[i] *= multiplier
        heap.Push(h, i)
        k--