Skip to content

3181. Maximum Total Reward Using Operations II

Description

You are given an integer array rewardValues of length n, representing the values of rewards.

Initially, your total reward x is 0, and all indices are unmarked. You are allowed to perform the following operation any number of times:

  • Choose an unmarked index i from the range [0, n - 1].
  • If rewardValues[i] is greater than your current total reward x, then add rewardValues[i] to x (i.e., x = x + rewardValues[i]), and mark the index i.

Return an integer denoting the maximum total reward you can collect by performing the operations optimally.

 

Example 1:

Input: rewardValues = [1,1,3,3]

Output: 4

Explanation:

During the operations, we can choose to mark the indices 0 and 2 in order, and the total reward will be 4, which is the maximum.

Example 2:

Input: rewardValues = [1,6,4,3,2]

Output: 11

Explanation:

Mark the indices 0, 2, and 1 in order. The total reward will then be 11, which is the maximum.

 

Constraints:

  • 1 <= rewardValues.length <= 5 * 104
  • 1 <= rewardValues[i] <= 5 * 104

Solutions

Solution 1: Dynamic Programming + Bit Manipulation

We define $f[i][j]$ as whether it is possible to obtain a total reward of $j$ using the first $i$ reward values. Initially, $f[0][0] = \textit{True}$, and all other values are $\textit{False}$.

We consider the $i$-th reward value $v$. If we do not choose it, then $f[i][j] = f[i - 1][j]$; if we choose it, then $f[i][j] = f[i - 1][j - v]$, where $0 \leq j - v < v$. Thus, the state transition equation is:

$$ f[i][j] = f[i - 1][j] \vee f[i - 1][j - v] $$

The final answer is $\max{j \mid f[n][j] = \textit{True}}$.

Since $f[i][j]$ only depends on $f[i - 1][j]$ and $f[i - 1][j - v]$, we can optimize away the first dimension and use only a one-dimensional array for state transitions. Additionally, due to the large data range of this problem, we need to use bit manipulation to optimize the efficiency of state transitions.

We define a binary number $f$ to save the current state, where the $i$-th bit of $f$ being $1$ indicates that a total reward of $i$ is reachable.

Observing the state transition equation $f[j] = f[j] \vee f[j - v]$, this is equivalent to taking the lower $v$ bits of $f$, shifting them left by $v$ bits, and then performing an OR operation with the original $f$.

Thus, the answer is the position of the highest bit in $f$.

The time complexity is $O(n \times M / w)$, and the space complexity is $O(n + M / w)$. Where $n$ is the length of the rewardValues array, $M$ is twice the maximum value in the rewardValues array, and the integer $w = 32$ or $64$.

1
2
3
4
5
6
7
class Solution:
    def maxTotalReward(self, rewardValues: List[int]) -> int:
        nums = sorted(set(rewardValues))
        f = 1
        for v in nums:
            f |= (f & ((1 << v) - 1)) << v
        return f.bit_length() - 1
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
import java.math.BigInteger;
import java.util.Arrays;

class Solution {
    public int maxTotalReward(int[] rewardValues) {
        int[] nums = Arrays.stream(rewardValues).distinct().sorted().toArray();
        BigInteger f = BigInteger.ONE;
        for (int v : nums) {
            BigInteger mask = BigInteger.ONE.shiftLeft(v).subtract(BigInteger.ONE);
            BigInteger shifted = f.and(mask).shiftLeft(v);
            f = f.or(shifted);
        }
        return f.bitLength() - 1;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
class Solution {
public:
    int maxTotalReward(vector<int>& rewardValues) {
        sort(rewardValues.begin(), rewardValues.end());
        rewardValues.erase(unique(rewardValues.begin(), rewardValues.end()), rewardValues.end());
        bitset<100000> f{1};
        for (int v : rewardValues) {
            int shift = f.size() - v;
            f |= f << shift >> (shift - v);
        }
        for (int i = rewardValues.back() * 2 - 1;; i--) {
            if (f.test(i)) {
                return i;
            }
        }
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
func maxTotalReward(rewardValues []int) int {
    slices.Sort(rewardValues)
    rewardValues = slices.Compact(rewardValues)
    one := big.NewInt(1)
    f := big.NewInt(1)
    p := new(big.Int)
    for _, v := range rewardValues {
        mask := p.Sub(p.Lsh(one, uint(v)), one)
        f.Or(f, p.Lsh(p.And(f, mask), uint(v)))
    }
    return f.BitLen() - 1
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
function maxTotalReward(rewardValues: number[]): number {
    rewardValues.sort((a, b) => a - b);
    rewardValues = [...new Set(rewardValues)];
    let f = 1n;
    for (const x of rewardValues) {
        const mask =